Fully Hydrocarbon Membrane Electrode Assemblies for Proton Exchange Membrane Fuel Cells and Electrolyzers: An Engineering Perspective

Advanced Energy Materials - Tập 12 Số 12 - 2022
Hien Q. Nguyen1,2, Carolin Klose1,2, Lukas Metzler1, Severin Vierrath1,2, Matthias Breitwieser1,2
1Electrochemical Energy Systems, IMTEK - Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
2Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany

Tóm tắt

AbstractPerfluorinated‐sulfonic‐acid‐based ionomers (PFSAs) are still the material of choice for electrochemical energy devices such as proton‐exchange membrane fuel cells or water electrolyzers. However, PFSAs show significant drawbacks ranging from a restricted temperature window of operation due to the insufficient thermomechanical stability, high cost, and questionable environmental properties. Recently, novel hydrocarbon‐based ionomers have been introduced, which not only have the potential to overcome these limitations, but also for the first time show promising performance, approaching that of PFSA‐based fuel cells and electrolyzers. This article summarizes the recent developments in this emerging field with a particular focus on the engineering of membrane‐electrode assemblies with hydrocarbon‐based polymer electrolytes. In the final part, the necessary key innovations are discussed, which are required for hydrocarbon ionomers to replace PFSAs in fuel cells and electrolyzers in the future.

Từ khóa


Tài liệu tham khảo

10.1039/c0ee00638f

10.1016/j.progpolymsci.2011.06.001

10.2172/1415145

10.1149/09208.0003ecst

10.1002/anie.202016977

10.1126/science.aad4998

10.1021/acsenergylett.8b00186

10.1021/acsapm.0c01405

10.1021/acsami.1c07611

10.1149/2.051405jes

10.1016/j.jpowsour.2018.05.093

10.1038/s41467-021-25301-3

10.1149/06403.0353ecst

10.1021/acs.chemrev.6b00159

Taibi E., 2020, Green Hydrogen Cost Reduction: Scaling Up Electrolysers to Meet the 1.5 °C Climate Goal

U.S. Department of Energy (DOE) Hydrogen Shot https://www.energy.gov/eere/fuelcells/hydrogen-shot(accessed: October 2021).

10.1149/1945-7111/ab88bd

10.1038/pj.2017.11

10.1021/acs.macromol.8b02289

10.1021/cr200035s

10.1016/j.polymer.2020.123080

10.1021/acs.chemrev.6b00586

10.1016/j.mtener.2020.100483

10.1039/D1MA00511A

10.1016/S0376-7388(00)00632-3

10.1021/acs.chemmater.8b05302

10.1126/sciadv.aao0476

10.1002/anie.201703916

10.1021/ma062324z

10.1002/adfm.201200811

10.1016/j.ijhydene.2020.03.003

10.1016/j.ijhydene.2012.05.136

10.1002/cssc.201801965

10.1016/j.polymer.2006.02.032

10.1021/cm801198d

10.1016/j.polymer.2008.08.046

10.1016/j.ijhydene.2017.06.040

10.1016/j.memsci.2021.119370

10.1016/j.polymer.2009.09.001

10.1021/ma400889t

10.1021/acsanm.9b00706

10.1038/nature17634

10.1038/srep16394

10.1021/ma901980b

10.1002/fuce.200400079

10.1021/ma301875n

Miyake J., 2021, ACS Mater. Au, 3, 87

10.1021/acsaem.7b00349

10.1016/j.jpowsour.2018.05.014

10.1149/08613.0369ecst

10.1016/j.jpowsour.2017.06.080

10.1149/1.3481581

10.1002/fuce.200900123

10.1149/1.3082119

10.1149/2.0251506jes

10.1016/j.elecom.2011.07.027

10.1016/j.elecom.2009.07.003

10.1016/j.electacta.2008.04.012

10.1039/D1SE00556A

10.1149/1.2898171

10.1016/j.memsci.2021.119330

Balogun E., 2021, Electrochim. Acta, 2

10.1016/S0013-4686(00)00679-4

10.1016/j.electacta.2010.06.067

10.1016/j.jpowsour.2013.03.055

10.1149/2.1251814jes

10.1021/acsami.9b17614

10.1149/1.3143965

10.1016/j.jpowsour.2010.06.050

Gu W., 2010, Handbook of Fuel Cells: Fundamentals, Technology and Applications

10.1016/j.jpowsour.2020.228889

10.1021/am200590w

Sharman J., 2019, Characterisation Method for Ionomer–Support Interaction

10.1038/s41563-019-0487-0

10.1016/j.jpowsour.2007.07.019

10.1149/2.0501914jes

10.1002/ange.201704253

10.1016/j.jpowsour.2004.09.021

10.1016/j.electacta.2018.04.213

10.1016/j.ijhydene.2018.03.045

10.1149/2.1111913jes

10.1149/2.1321714jes

10.1149/1.2400626

10.1149/2.1621704jes

Kocha S. S., 2010, Handbook of Fuel Cells: Fundamentals, Technology and Applications

10.1002/aenm.202101025

10.1021/am900600y

10.1149/1.2048477

10.1002/cssc.201402015

10.1016/j.electacta.2009.12.046

10.1021/jacs.9b09170

10.1149/2.046303jes

10.1002/fuce.201000031

10.1021/acsami.1c04270

Kreuer K. D., 2019, Polymers for Fuel Cells, Energy Storage, and Conversion

10.1016/j.elecom.2013.03.018

10.1149/2.1441704jes

10.1007/s10800-012-0490-5

10.1016/0376-7388(93)85268-2

10.1016/S0360-3199(97)00113-4

10.1016/j.memsci.2008.05.028

10.1021/acsami.5b04618

10.1016/j.ijhydene.2014.02.082

10.1016/j.ijhydene.2010.05.041

10.1016/j.memsci.2013.07.058

10.1021/ma3026145

10.1002/aenm.201903995

10.1016/j.memsci.2020.118871

10.1016/j.ijhydene.2012.06.017

10.1023/A:1003477305336

10.1016/j.memsci.2019.117539

10.1149/2.F05053IF

U.S. Department of Energy (DOE) FuelCell Technical Team Roadmap https://www.energy.gov/sites/prod/files/2017/11/f46/FCTT_Roadmap_Nov_2017_FINAL.pdf(accessed: January 2022).

10.1021/acsaem.9b01513

10.1246/bcsj.20190351

10.1007/978-1-4614-5785-5_7

10.3390/polym13060959

10.3389/fenrg.2014.00050

10.1149/1.3484568

10.1021/acsapm.0c00895

10.1016/j.electacta.2013.07.074

10.1016/j.memsci.2007.10.050

10.1021/ma800612t

10.1149/2.0131806jes

10.1016/j.memsci.2006.09.026

10.1016/j.jpowsour.2006.10.077

10.1039/b822069g

10.1016/j.ijhydene.2012.02.148

10.1039/c1jm10577a

10.1002/fuce.200800005

10.1021/am5010317

Kolde J. A., 1995, Proc. First Int. Symp. Proton Conducting Membrane Fuel Cells I, 193

Cleghorn S., 2010, Handbook of Fuel Cells: Fundamentals, Technology and Applications

10.1149/MA2020-02352244mtgabs

10.1016/j.powera.2021.100063

10.1149/MA2020-01381657mtgabs

Gubler L., 2018, The Chemistry of Membranes Used in Fuel Cells

10.1149/1945-7111/abf9be

10.1063/1.555805

10.1016/j.jpowsour.2015.07.001

10.1038/s41560-021-00775-z

10.1016/0923-1137(90)90038-6

10.1016/S1381-5148(02)00173-6

10.1002/anie.200701595

10.1002/adma.200801971

10.1039/C2CS35072F

10.1002/advs.201801410

10.1039/D1TA05005B

10.1007/s13233-014-2007-z

10.1002/adma.200306053

10.1016/j.elecom.2020.106798

10.3390/molecules24193425

10.1016/j.jpowsour.2021.230039

10.1021/jp071106k

10.1016/j.coelec.2018.11.012

10.1039/c3cp51450a

10.1016/S0013-4686(03)00257-3

10.1149/1.1838202

10.1149/1.2266294

10.1021/acsami.9b11365

10.1002/adfm.202008778

10.1149/1.1897368

10.1039/D1YA00024A

10.1149/1.2356119

10.1021/acsami.5b08720

10.1016/j.electacta.2016.04.023

10.1039/D0EE00673D

10.1021/acscatal.1c03908

10.1149/2.0231611jes

10.1016/j.apcatb.2004.06.021

10.1021/jp970930d

10.1149/2.0071611jes

10.1149/2.0211512jes

10.1149/200231.0001PV

10.1149/1.3152226

10.1149/2.0031907jes

10.1016/j.ijhydene.2017.01.036

10.1149/2.0551702jes

10.1016/j.jelechem.2013.01.026

10.1149/1.3556906

10.1016/j.jpowsour.2007.02.027

The Organisation for Economic Co‐operation and Development (OECD) Reconciling Terminology of the Universe of Per‐ and Polyfluoroalkyl Substances: Recommendations and Practical Guidance https://www.oecd.org/chemicalsafety/portal-perfluorinated-chemicals/terminology-per-and-polyfluoroalkyl-substances.pdf(accessed: December 2021).

European chemical agency (ECHA) Five European states call for evidence on broad PFAS restriction https://echa.europa.eu/de/-/five-european-states-call-for-evidence-on-broad-pfas-restriction(accessed: December 2021).