Frugivore-fruit size relationships between palms and mammals reveal past and future defaunation impacts

Nature Communications - Tập 11 Số 1
Jun Ying Lim1, Jens‐Christian Svenning2, Bastian Göldel2, Søren Faurby3, W. Daniel Kissling1
1Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
2Section for Ecoinformatics and Biodiversity & Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, 8000, Denmark
3Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg 40530, Sweden

Tóm tắt

AbstractMammalian frugivores are critical seed dispersers, but many are under threat of extinction. Futhermore, the impact of past and future defaunation on plant assemblages has yet to be quantified at the global scale. Here, we integrate palm and mammalian frugivore trait and occurrence data and reveal a global positive relationship between fruit size and frugivore body size. Global variation in fruit size is better explained by present-day frugivore assemblages than by Late Pleistocene assemblages, suggesting ecological and evolutionary reorganization after end-Pleistocene extinctions, except in the Neotropics, where some large-fruited palm species may have outlived their main seed dispersers by thousands of years. Our simulations of frugivore extinction over the next 100 years suggest that the impact of defaunation will be highest in the Old World tropics, and an up to 4% assemblage-level decrease in fruit size would be required to maintain the global body size–fruit size relationship. Overall, our results suggest that while some palm species may be able to keep pace with future defaunation through evolutionary changes in fruit size, large-fruited species may be especially vulnerable to continued defaunation.

Từ khóa


Tài liệu tham khảo

Fleming, T. H. & Kress, W. J. The Ornaments of Life: Coevolution and Conservation in the Tropics (Univ. Chicago Press, 2013).

Comita, L. S. et al. Testing predictions of the Janzen-Connell hypothesis: a meta-analysis of experimental evidence for distance- and density-dependent seed and seedling survival. J. Ecol. 102, 845–856 (2014).

Howe, H. F. & Smallwood, J. Ecology of seed dispersal. Annu. Rev. Ecol. Syst. 13, 201–228 (1982).

Jordano, P. in Seeds: The Ecology of Regeneration in Plant Communities 2nd edn (ed. Fenner, M.) 125–165 (CABI, 2000).

Janzen, D. H. & Martin, P. S. Neotropical anachronisms: the fruits the gomphotheres ate. Science 215, 19–27 (1982).

Guimarães, P. R., Galetti, M. & Jordano, P. Seed dispersal anachronisms: rethinking the fruits extinct megafauna ate. PLoS ONE 3, e1745 (2008).

Galetti, M. et al. Functional extinction of birds drives rapid evolutionary changes in seed size. Science 340, 1086–1090 (2013).

Bender, I. M. A. et al. Morphological trait matching shapes plant-frugivore networks across the Andes. Ecography 41, 1910–1919 (2018).

Faurby, S. & Svenning, J. C. Historic and prehistoric human-driven extinctions have reshaped global mammal diversity patterns. Divers. Distrib. 21, 1155–1166 (2015).

Smith, F. A., Smith, R. E. E., Lyons, S. K. & Payne, J. L. Body size downgrading of mammals over the late Quaternary. Science 360, 310–313 (2018).

Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).

Martin, P. & Klein, R. Quaternary Extinctions: A Prehistoric Revolution. (Univ. Arizona Press, 1984).

Campos-Arceiz, A. & Blake, S. Megagardeners of the forest—the role of elephants in seed dispersal. Acta Oecol. 37, 542–553 (2011).

Ripple, W. J. et al. Collapse of the world’s largest herbivores. Sci. Adv. 1, e1400103 (2015).

Carbone, C., Cowlishaw, G., Isaac, N. & Rowcliffe, J. M. How far do animals go? Determinants of day range in mammals. Am. Nat. 165, 290–297 (2005).

Pires, M. M., Guimaraes, P. R., Galetti, M. & Jordano, P. Pleistocene megafaunal extinctions and the functional loss of long-distance seed-dispersal services. Ecography 41, 153–163 (2018).

Galetti, M. et al. Ecological and evolutionary legacy of megafauna extinctions. Biol. Rev. 93, 845–862 (2017).

Jansen, P. A. et al. Thieving rodents as substitute dispersers of megafaunal seeds. Proc. Natl Acad. Sci. USA 109, 12610–12615 (2012).

Onstein, R. E. et al. To adapt or go extinct? The fate of megafaunal palm fruits under past global change. Proc. R. Soc. B 285, 20180882 (2018).

Young, H. S., McCauley, D. J., Galetti, M. & Dirzo, R. Patterns, causes, and consequences of Anthropocene defaunation. Annu. Rev. Ecol. Evolut. Syst. 47, 333–358 (2016).

Galetti, M. & Dirzo, R. Ecological and evolutionary consequences of living in a defaunated world. Biol. Conserv. 163, 1–6 (2013).

Emer, C., Galetti, M., Pizo, M. A., Jordano, P. & Verdú, M. Defaunation precipitates the extinction of evolutionarily distinct interactions in the Anthropocene. Sci. Adv. 5, eaav6699 (2019).

Gardner, C. J., Bicknell, J. E., Baldwin-Cantello, W., Struebig, M. J. & Davies, Z. G. Quantifying the impacts of defaunation on natural forest regeneration in a global meta-analysis. Nat. Commun. 10, 4590 (2019).

Dransfield, J. et al. Genera Palmarum — The Evolution and Classification of Palms (Royal Botanic Gardens, 2008).

Couvreur, T. L. P. & Baker, W. J. Tropical rain forest evolution: palms as a model group. BMC Biol. 11, 48 (2013).

Terborgh, J. W. in Conservation Biology: the Science of Scarcity and Diversity (ed. Soulé, M. E.) 330–344 (Sinauer Associates, 1986).

Zona, S. & Henderson, A. A review of animal-mediated seed dispersal of palms. Selbyana 11, 6–21 (1989).

Muñoz, G., Trøjelsgaard, K. & Kissling, W. D. A synthesis of animal-mediated seed dispersal of palms reveals distinct biogeographical differences in species interactions. J. Biogeogr. 46, 466–484 (2019).

Kissling, W. D. et al. PalmTraits 1.0: a species-level functional trait database for palms worldwide. Sci. Data 6, 178 (2019).

Govaerts, R. & Dransfield, J. World Checklist of Palms (Royal Botanic Gardens, 2005).

Brummitt, R. K., Pando, F., Hollis, S. & Brummitt, N. A. World Geographical Scheme for Recording Plant Distributions (TDWG, 2001).

Cade, B. S. Model averaging and muddled multimodel inferences. Ecology 96, 2370–2382 (2015).

Wheelwright, N. T. Fruit size, gape width, and the diets of fruit-eating birds. Ecology 66, 808–818 (1985).

Lord, J. M. Frugivore gape size and the evolution of fruit size and shape in southern hemisphere floras. Austral Ecol. 29, 430–436 (2004).

Levey, D. J. Seed size and fruit-handling techniques of avian frugivores. Am. Nat. 129, 471–485 (1987).

Corlett, R. T. How to be a frugivore (in a changing world). Acta Oecol. 37, 674–681 (2011).

Göldel, B., Kissling, W. D. & Svenning, J. C. Geographical variation and environmental correlates of functional trait distributions in palms (Arecaceae) across the New World. Bot. J. Linn. Soc. 179, 602–617 (2015).

Kissling, W. D. et al. Cenozoic imprints on the phylogenetic structure of palm species assemblages worldwide. Proc. Natl Acad. Sci. USA 109, 7379–7384 (2012).

Barnosky, A. D., Koch, P. L., Feranec, R. S., Wing, S. L. & Shabel, A. B. Assessing the causes of late Pleistocene extinctions on the continents. Science 306, 70–75 (2004).

Sandom, C., Faurby, S., Sandel, B. & Svenning, J. C. Global late Quaternary megafauna extinctions linked to humans, not climate change. Proc. R. Soc. B 281, 20133254 (2014).

Doughty, C. E. et al. Megafauna extinction, tree species range reduction, and carbon storage in Amazonian forests. Ecography 39, 194–203 (2015).

Galetti, M., Donatti, C. I., Pires, A. S., Guimarães Jr, P. R. & Jordano, P. Seed survival and dispersal of an endemic Atlantic forest palm: the combined effects of defaunation and forest fragmentation. Bot. J. Linn. Soc. 151, 141–149 (2006).

Beaune, D., Fruth, B., Bollache, L., Hohmann, G. & Bretagnolle, F. Doom of the elephant-dependent trees in a Congo tropical forest. For. Ecol. Manag. 295, 109–117 (2013).

Wotton, D. M. & Kelly, D. Frugivore loss limits recruitment of large-seeded trees. Proc. R. Soc. B 278, 3345–3354 (2011).

Harrison, R. D. et al. Consequences of defaunation for a tropical tree community. Ecol. Lett. 16, 687–694 (2013).

Pérez-Méndez, N., Jordano, P., García, C. & Valido, A. The signatures of Anthropocene defaunation: cascading effects of the seed dispersal collapse. Sci. Rep. 6, 24820 (2016).

Nevo, O. et al. Frugivores and the evolution of fruit colour. Biol. Lett. 14, 20180377 (2018).

Nevo, O., Razafimandimby, D., Jeffrey, J. A. J., Schulz, S. & Ayasse, M. Fruit scent as an evolved signal to primate seed dispersal. Sci. Adv. 4, eaat4871 (2018).

Bueno, R. S. et al. Functional redundancy and complementarities of seed dispersal by the last neotropical megafrugivores. PLoS ONE 8, e56252 (2013).

Sekar, N., Lee, C.-L. & Sukumar, R. Functional nonredundancy of elephants in a disturbed tropical forest. Conserv. Biol. 31, 1152–1162 (2017).

Campos-Arceiz, A., Traeholt, C., Jaffar, R., Santamaria, L. & Corlett, R. T. Asian tapirs are no elephants when it comes to seed dispersal. Biotropica 44, 220–227 (2012).

Corlett, R. T. The impact of hunting on the mammalian fauna of tropical asian forests. Biotropica 39, 292–303 (2007).

Vidal, M. M., Pires, M. M. & Guimarães Jr, P. R. Large vertebrates as the missing components of seed-dispersal networks. Biol. Conserv. 163, 42–48 (2013).

Heinen, J. H., van Loon, E. E., Hansen, D. M. & Kissling, W. D. Extinction-driven changes in frugivore communities on oceanic islands. Ecography 41, 1245–1255 (2017).

Valido, A. & Olesen, J. M. Frugivory and seed dispersal by lizards: a global review. Front. Ecol. Evolut. 7, 49 (2019).

Florens, F. B. V. et al. Disproportionately large ecological role of a recently mass-culled flying fox in native forests of an oceanic island. J. Nat. Conserv. 40, 85–93 (2017).

Vizentin-Bugoni, J. et al. Structure, spatial dynamics, and stability of novel seed dispersal mutualistic networks in Hawai‘i. Science 364, 78–82 (2019).

Muñoz-Gallego, R., Fedriani, J. M. & Traveset, A. Non-native mammals are the main seed dispersers of the ancient mediterranean palm Chamaerops humilis L. in the balearic islands: rescuers of a lost seed dispersal service? Front. Ecol. Evolut. 7, 161 (2019).

Pires, M. M. Rewilding ecological communities and rewiring ecological networks. Perspect. Ecol. Conserv. 15, 257–265 (2017).

Schleuning, M. et al. Ecological networks are more sensitive to plant than to animal extinction under climate change. Nat. Commun. 7, 13965 (2016).

Maisels, F. et al. Devastating decline of forest elephants in central Africa. PLoS ONE 8, e59469 (2013).

Valiente-Banuet, A. et al. Beyond species loss: the extinction of ecological interactions in a changing world. Funct. Ecol. 29, 299–307 (2014).

Tucker, M. A. et al. Moving in the Anthropocene: global reductions in terrestrial mammalian movements. Science 359, 466–469 (2018).

Sales, L. P., Ribeiro, B. R., Pires, M. M., Chapman, C. A. & Loyola, R. Recalculating route: dispersal constraints will drive the redistribution of Amazon primates in the Anthropocene. Ecography 42, 1789–1801 (2019).

Humphreys, A. M., Govaerts, R., Ficinski, S. Z., Lughadha, E. N. & Vorontsova, M. S. Global dataset shows geography and life form predict modern plant extinction and rediscovery. Nat. Ecol. Evolut. 3, 1043–1047 (2019).

Cronk, Q. Plant extinctions take time. Science 353, 446–447 (2016).

Svenning, J. C. et al. Science for a wilder Anthropocene: synthesis and future directions for trophic rewilding research. Proc. Natl Acad. Sci. USA 113, 898–906 (2016).

Galetti, M., Pires, A. S., Brancalion, P. H. & Fernandez, F. A. Reversing defaunation by trophic rewilding in empty forests. Biotropica 49, 5–8 (2017).

Fricke, E. C., Tewksbury, J. J. & Rogers, H. S. Defaunation leads to interaction deficits, not interaction compensation, in an island seed dispersal network. Glob. Change Biol. 24, e190–e200 (2017).

Meyer, C., Weigelt, P. & Kreft, H. Multidimensional biases, gaps and uncertainties in global plant occurrence information. Ecol. Lett. 19, 992–1006 (2016).

Kissling, W. D. et al. Quaternary and pre-Quaternary historical legacies in the global distribution of a major tropical plant lineage. Glob. Ecol. Biogeogr. 21, 909–921 (2012).

Cheke, A. S. & Dahl, J. F. The Status of bats on western Indian Ocean islands, with special reference to Pteropus. Mammalia 45, 205–238 (1981).

Prescott, G. W., Williams, D. R., Balmford, A., Green, R. E. & Manica, A. Quantitative global analysis of the role of climate and people in explaining late Quaternary megafaunal extinctions. Proc. Natl Acad. Sci. USA 109, 4527–4531 (2012).

Martin, P. S. in Quaternary Extinctions: A Prehistoric Revolution (eds Martin, P. S. & Klein, R. G.) 354–403 (Univ. Arizona Press, 1984).

Miller, G. H. et al. Ecosystem collapse in Pleistocene Australia and a human role in megafaunal extinction. Science 309, 287–290 (2005).

Faurby, S. et al. PHYLACINE 1.2: the phylogenetic atlas of mammal macroecology. Ecology 99, 2626 (2018).

Kissling, W. D. et al. Establishing macroecological trait datasets: digitalization, extrapolation, and validation of diet preferences in terrestrial mammals worldwide. Ecol. Evolut. 4, 2913–2930 (2014).

International Union for Conservation of Nature and Natural Resources. The IUCN Red List of threatened species. Version 2018-2. IUCN http://www.iucnredlist.org (2018).

Tiffney, B. H. Vertebrate dispersal of seed plants through time. Annu. Rev. Ecol. Evolut. Syst. 35, 1–29 (2004).

Franãğa, L. D. M. et al. Review of feeding ecology data of Late Pleistocene mammalian herbivores from South America and discussions on niche differentiation. Earth Sci. Rev. 140, 158–165 (2015).

MacFadden, B. J. & Shockey, B. J. Ancient feeding ecology and niche differentiation of Pleistocene mammalian herbivores from Tarija, Bolivia: morphological and isotopic evidence. Paleobiology 23, 77–100 (1997).

Morosi, E. & Ubilla, M. Dietary and palaeoenvironmental inferences in Neolicaphrium recens Frenguelli, 1921 (Litopterna, Proterotheriidae) using carbon and oxygen stable isotopes (Late Pleistocene; Uruguay). Hist. Biol. 31, 196–202 (2017).

MacFadden, B. J. Diet and habitat of toxodont megaherbivores (Mammalia, Notoungulata) from the late Quaternary of South and Central America. Quat. Res. 64, 113–124 (2005).

Domingo, L., Prado, J. L. & Alberdi, M. T. The effect of paleoecology and paleobiogeography on stable isotopes of Quaternary mammals from South America. Quat. Sci. Rev. 55, 103–113 (2012).

DeSantis, L. R. G., Field, J. H., Wroe, S. & Dodson, J. R. Dietary responses of Sahul (Pleistocene Australia-New Guinea) megafauna to climate and environmental change. Paleobiology 43, 181–195 (2017).

Karger, D. N. et al. Data descriptor: climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).

Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

Braconnot, P. et al. Evaluation of climate models using palaeoclimatic data. Nat. Clim. Change 2, 417–424 (2012).

Kissling, W. D. & Carl, G. Spatial autocorrelation and the selection of simultaneous autoregressive models. Glob. Ecol. Biogeogr. 17, 59–71 (2008).

Bivand, R. et al. spatialreg: spatial regression analysis. GitHub https://r-spatial.github.io/spatialreg/ (2019).

Burnham, K. P. & Anderson, D. R. Model Selection and Multi-Model Inference: A Practical Information-Theoretic Approach 2nd edn (Springer, 2002).

Grueber, C. E., Nakagawa, S., Laws, R. J. & Jamieson, I. G. Multimodel inference in ecology and evolution: challenges and solutions. J. Evolut. Biol. 24, 699–711 (2011).

Harrison, X. A. et al. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 6, e4794 (2018).

Bartoń, K. MuMIn: multi-model inference. CRAN https://cran.r-project.org/package=MuMIn (2019).

Galipaud, M., Gillingham, M. A. F. & Dechaume-Moncharmont, F.-X. A farewell to the sum of Akaike weights: The benefits of alternative metrics for variable importance estimations in model selection. Methods Ecol. Evolut. 8, 1668–1678 (2017).

Zuber, V. & Strimmer, K. High-dimensional regression and variable selection using CAR scores. Stat. Appl. Genet. Mol. Biol. 10, 34 (2011).

Grömping, U. Relative importance for linear regression in R: the package relaimpo. J. Stat. Softw. 17, 1–27 (2006).

Mooers, A. Ø., Faith, D. P. & Maddison, W. P. Converting endangered species categories to probabilities of extinction for phylogenetic conservation prioritization. PLoS ONE 3, e3700 (2008).

Davis, M., Faurby, S. & Svenning, J. C. Mammal diversity will take millions of years to recover from the current biodiversity crisis. Proc. Natl Acad. Sci. USA 115, 11262–11267 (2018).

International Union for Conservation of Nature and Natural Resources. IUCN Red List categories and criteria: version 3.1, 2nd edn (IUCN, 2012).

Hoffmann, M. et al. The impact of conservation on the status of the world’s vertebrates. Science 330, 1503–1509 (2010).

Di Marco, M. et al. A retrospective evaluation of the global decline of carnivores and ungulates. Conserv. Biol. 28, 1109–1118 (2014).