Fructose, insulin resistance, and metabolic dyslipidemia

Nutrition & Metabolism - Tập 2 Số 1 - 2005
Heather Basciano1, Lisa Federico1, Khosrow Adeli1
1Clinical Biochemistry Division, Department of Laboratory Medicine and Pathobiology, Hospital for Sick Children, University of Toronto, Toronto, Canada

Tóm tắt

Abstract Obesity and type 2 diabetes are occurring at epidemic rates in the United States and many parts of the world. The "obesity epidemic" appears to have emerged largely from changes in our diet and reduced physical activity. An important but not well-appreciated dietary change has been the substantial increase in the amount of dietary fructose consumption from high intake of sucrose and high fructose corn syrup, a common sweetener used in the food industry. A high flux of fructose to the liver, the main organ capable of metabolizing this simple carbohydrate, perturbs glucose metabolism and glucose uptake pathways, and leads to a significantly enhanced rate of de novo lipogenesis and triglyceride (TG) synthesis, driven by the high flux of glycerol and acyl portions of TG molecules from fructose catabolism. These metabolic disturbances appear to underlie the induction of insulin resistance commonly observed with high fructose feeding in both humans and animal models. Fructose-induced insulin resistant states are commonly characterized by a profound metabolic dyslipidemia, which appears to result from hepatic and intestinal overproduction of atherogenic lipoprotein particles. Thus, emerging evidence from recent epidemiological and biochemical studies clearly suggests that the high dietary intake of fructose has rapidly become an important causative factor in the development of the metabolic syndrome. There is an urgent need for increased public awareness of the risks associated with high fructose consumption and greater efforts should be made to curb the supplementation of packaged foods with high fructose additives. The present review will discuss the trends in fructose consumption, the metabolic consequences of increased fructose intake, and the molecular mechanisms leading to fructose-induced lipogenesis, insulin resistance and metabolic dyslipidemia.

Từ khóa


Tài liệu tham khảo

Astrup A, Finer N: Redefining type 2 diabetes: 'diabesity' or 'obesity dependent diabetes mellitus'?. Obes Rev. 2000, 1: 57-59.

Mokdad AH, Ford ES, Bowman BA, Nelson DE, Engelgau MM, Vinicor F, Marks JS: Diabetes trends in the US: 1990–1998. Diabetes Care. 2000, 23: 1278-1283.

Mokdad AH, Bowman BA, Ford ES, Vinicor F, Marks JS, Koplan JP: The continuing epidemics of obesity and diabetes in the United States. Jama. 2001, 286: 1195-1200.

Mokdad AH, Serdula MK, Dietz WH, Bowman BA, Marks JS, Koplan JP: The spread of the obesity epidemic in the United States, 1991–1998. Jama. 1999, 282: 1519-1522.

Pan XR, Yang WY, Li GW, Liu J: Prevalence of diabetes and its risk factors in China, 1994. National Diabetes Prevention and Control Cooperative Group. Diabetes Care. 1997, 20: 1664-1669.

Ramachandran A, Snehalatha C, Latha E, Vijay V, Viswanathan M: Rising prevalence of NIDDM in an urban population in India. Diabetologia. 1997, 40: 232-237.

Centers for Disease Control and Prevention NCfHS, Division of Health Interview Statistics: Census of the population and population estimates. 1997, Hyattsville, MD: Centers for Disease Control and Prevention

Zimmet P, Alberti KG, Shaw J: Global and societal implications of the diabetes epidemic. Nature. 2001, 414: 782-787.

Keller KB, Lemberg L: Obesity and the metabolic syndrome. Am J Crit Care. 2003, 12: 167-170.

Songer TJ: The economic costs of NIDDM. Diabetes Metab Rev. 1992, 8: 389-404.

Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). Jama. 2001, 285: 2486-2497.

Edwards KL, Talmud PJ, Newman B, Krauss RM, Austin MA: Lipoprotein candidate genes for multivariate factors of the insulin resistance syndrome: a sib-pair linkage analysis in women twins. Twin Res. 2001, 4: 41-47.

Avramoglu RK, Qiu W, Adeli K: Mechanisms of metabolic dyslipidemia in insulin resistant states: deregulation of hepatic and intestinal lipoprotein secretion. Front Biosci. 2003, 8: d464-476.

Rosmond R: Role of stress in the pathogenesis of the metabolic syndrome. Psychoneuroendocrinology. 2005, 30: 1-10.

Bao W, Srinivasan SR, Berenson GS: Persistent elevation of plasma insulin levels is associated with increased cardiovascular risk in children and young adults. The Bogalusa Heart Study. Circulation. 1996, 93: 54-59.

Freedman DS, Khan LK, Dietz WH, Srinivasan SR, Berenson GS: Relationship of childhood obesity to coronary heart disease risk factors in adulthood: the Bogalusa Heart Study. Pediatrics. 2001, 108: 712-718.

Valek J, Vlasakova Z: [The metabolic syndrome, its heredity, methods of detection and clinical significance]. Vnitr Lek. 1997, 43: 566-573.

Kohen-Avramoglu R, Theriault A, Adeli K: Emergence of the metabolic syndrome in childhood: an epidemiological overview and mechanistic link to dyslipidemia. Clin Biochem. 2003, 36: 413-420.

Feskens EJ, Virtanen SM, Rasanen L, Tuomilehto J, Stengard J, Pekkanen J, Nissinen A, Kromhout D: Dietary factors determining diabetes and impaired glucose tolerance. A 20-year follow-up of the Finnish and Dutch cohorts of the Seven Countries Study. Diabetes Care. 1995, 18: 1104-1112.

Hill JO, Lin D, Yakubu F, Peters JC: Development of dietary obesity in rats: influence of amount and composition of dietary fat. Int J Obes Relat Metab Disord. 1992, 16: 321-333.

Kromhout D, Menotti A, Bloemberg B, Aravanis C, Blackburn H, Buzina R, Dontas AS, Fidanza F, Giampaoli S, Jansen A: Dietary saturated and trans fatty acids and cholesterol and 25-year mortality from coronary heart disease: the Seven Countries Study. Prev Med. 1995, 24: 308-315.

Romieu I, Willett WC, Stampfer MJ, Colditz GA, Sampson L, Rosner B, Hennekens CH, Speizer FE: Energy intake and other determinants of relative weight. Am J Clin Nutr. 1988, 47: 406-412.

Liu S, Manson JE: Dietary carbohydrates, physical inactivity, obesity, and the 'metabolic syndrome' as predictors of coronary heart disease. Curr Opin Lipidol. 2001, 12: 395-404.

Jenkins DJ, Wolever TM, Taylor RH, Barker H, Fielden H, Baldwin JM, Bowling AC, Newman HC, Jenkins AL, Goff DV: Glycemic index of foods: a physiological basis for carbohydrate exchange. Am J Clin Nutr. 1981, 34: 362-366.

Jenkins DJ, Jenkins AL: The glycemic index, fiber, and the dietary treatment of hypertriglyceridemia and diabetes. J Am Coll Nutr. 1987, 6: 11-17.

Miller JC: Importance of glycemic index in diabetes. Am J Clin Nutr. 1994, 59: 747S-752S.

Kasim-Karakas SE, Vriend H, Almario R, Chow LC, Goodman MN: Effects of dietary carbohydrates on glucose and lipid metabolism in golden Syrian hamsters. J Lab Clin Med. 1996, 128: 208-213.

Hwang IS, Ho H, Hoffman BB, Reaven GM: Fructose-induced insulin resistance and hypertension in rats. Hypertension. 1987, 10: 512-516.

Cummings LE: Commercial foodservice considerations in providing consumer-driven nutrition program elements. Part I. Consumer health objectives and associated employee education needs. Cater Health. 1988, 1: 51-71.

Willett WC: Dietary fat plays a major role in obesity: no. Obes Rev. 2002, 3: 59-68.

Kromhout D: Diet and cardiovascular diseases. J Nutr Health Aging. 2001, 5: 144-149.

Gross LS, Li L, Ford ES, Liu S: Increased consumption of refined carbohydrates and the epidemic of type 2 diabetes in the United States: an ecologic assessment. Am J Clin Nutr. 2004, 79: 774-779.

Bray GA, Nielsen SJ, Popkin BM: Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. Am J Clin Nutr. 2004, 79: 537-543.

Putnam J: Food consumption, prices, and expenditures, 1970–91. Economic Research Service. 1999, Washington, DC: US Deparment of Agriculture

United States Dept of Agriculture: The Food guide pyramid. 1992, [Washington, DC.?]: US Dept of Agriculture

Cavadini C, Siega-Riz AM, Popkin BM: US adolescent food intake trends from 1965 to 1996. West J Med. 2000, 173: 378-383.

Jacobson MF: High-fructose corn syrup and the obesity epidemic. Am J Clin Nutr. 2004, 80: 1081-author reply 1081–1082

Bowman SA: Beverage choices of young females: changes and impact on nutrient intakes. J Am Diet Assoc. 2002, 102: 1234-1239.

Wharton CM, Hampl JS: Beverage consumption and risk of obesity among Native Americans in Arizona. Nutr Rev. 2004, 62: 153-159.

Mehnert H: [Sugar substitutes in the diabetic diet]. Int Z Vitam Ernahrungsforsch Beih. 1976, 15: 295-324.

Moore MC, Cherrington AD, Mann SL, Davis SN: Acute fructose administration decreases the glycemic response to an oral glucose tolerance test in normal adults. J Clin Endocrinol Metab. 2000, 85: 4515-4519.

Position of the American Dietetic Association: use of nutritive and nonnutritive sweeteners. J Am Diet Assoc. 2004, 104: 255-275.

Hung CT: Effects of high-fructose (90%) corn syrup on plasma glucose, insulin, and C-peptide in non-insulin-dependent diabetes mellitus and normal subjects. Taiwan Yi Xue Hui Za Zhi. 1989, 88: 883-885.

Breinholt VM, Nielsen SE, Knuthsen P, Lauridsen ST, Daneshvar B, Sorensen A: Effects of commonly consumed fruit juices and carbohydrates on redox status and anticancer biomarkers in female rats. Nutr Cancer. 2003, 45: 46-52.

Raben A, Vasilaras TH, Moller AC, Astrup A: Sucrose compared with artificial sweeteners: different effects on ad libitum food intake and body weight after 10 wk of supplementation in overweight subjects. Am J Clin Nutr. 2002, 76: 721-729.

Moyer AE, Rodin J: Fructose and behavior: does fructose influence food intake and macronutrient selection?. Am J Clin Nutr. 1993, 58: 810S-814S.

McGuinness OP, Cherrington AD: Effects of fructose on hepatic glucose metabolism. Curr Opin Clin Nutr Metab Care. 2003, 6: 441-448.

Hallfrisch J: Metabolic effects of dietary fructose. Faseb J. 1990, 4: 2652-2660.

Daly ME, Vale C, Walker M, Alberti KG, Mathers JC: Dietary carbohydrates and insulin sensitivity: a review of the evidence and clinical implications. Am J Clin Nutr. 1997, 66: 1072-1085.

Commerford SR, Ferniza JB, Bizeau ME, Thresher JS, Willis WT, Pagliassotti MJ: Diets enriched in sucrose or fat increase gluconeogenesis and G-6-Pase but not basal glucose production in rats. Am J Physiol Endocrinol Metab. 2002, 283: E545-555.

Dirlewanger M, Schneiter P, Jequier E, Tappy L: Effects of fructose on hepatic glucose metabolism in humans. Am J Physiol Endocrinol Metab. 2000, 279: E907-911.

Pagliassotti MJ, Wei Y, Bizeau ME: Glucose-6-phosphatase activity is not suppressed but the mRNA level is increased by a sucrose-enriched meal in rats. J Nutr. 2003, 133: 32-37.

Mayes PA: Intermediary metabolism of fructose. Am J Clin Nutr. 1993, 58: 754S-765S.

Truswell AS: Glycaemic index of foods. Eur J Clin Nutr. 1992, 46 (Suppl 2): S91-101.

Anderson GH, Woodend D: Effect of glycemic carbohydrates on short-term satiety and food intake. Nutr Rev. 2003, 61: S17-26.

Anderson GH, Catherine NL, Woodend DM, Wolever TM: Inverse association between the effect of carbohydrates on blood glucose and subsequent short-term food intake in young men. Am J Clin Nutr. 2002, 76: 1023-1030.

Vozzo R, Baker B, Wittert GA, Wishart JM, Morris H, Horowitz M, Chapman I: Glycemic, hormone, and appetite responses to monosaccharide ingestion in patients with type 2 diabetes. Metabolism. 2002, 51: 949-957.

Levine R: Monosaccharides in health and disease. Annu Rev Nutr. 1986, 6: 211-224.

Elliott SS, Keim NL, Stern JS, Teff K, Havel PJ: Fructose, weight gain, and the insulin resistance syndrome. Am J Clin Nutr. 2002, 76: 911-922.

Teff KL, Elliott SS, Tschop M, Kieffer TJ, Rader D, Heiman M, Townsend RR, Keim NL, D'Alessio D, Havel PJ: Dietary fructose reduces circulating insulin and leptin, attenuates postprandial suppression of ghrelin, and increases triglycerides in women. J Clin Endocrinol Metab. 2004, 89: 2963-2972.

Mora S, Pessin JE: An adipocentric view of signaling and intracellular trafficking. Diabetes Metab Res Rev. 2002, 18: 345-356.

Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, Yamashita S, Noda M, Kita S, Ueki K: Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med. 2002, 8: 1288-1295.

Havel PJ: Control of energy homeostasis and insulin action by adipocyte hormones: leptin, acylation stimulating protein, and adiponectin. Curr Opin Lipidol. 2002, 13: 51-59.

Miller CC, Martin RJ, Whitney ML, Edwards GL: Intracerebroventricular injection of fructose stimulates feeding in rats. Nutr Neurosci. 2002, 5: 359-362.

Kanarek RB, Orthen-Gambill N: Differential effects of sucrose, fructose and glucose on carbohydrate-induced obesity in rats. J Nutr. 1982, 112: 1546-1554.

Wu T, Giovannucci E, Pischon T, Hankinson SE, Ma J, Rifai N, Rimm EB: Fructose, glycemic load, and quantity and quality of carbohydrate in relation to plasma C-peptide concentrations in US women. Am J Clin Nutr. 2004, 80: 1043-1049.

Oron-Herman M, Rosenthal T, Sela BA: Hyperhomocysteinemia as a component of syndrome X. Metabolism. 2003, 52: 1491-1495.

Okada E, Oida K, Tada H, Asazuma K, Eguchi K, Tohda G, Kosaka S, Takahashi S, Miyamori I: Hyperhomocysteinemia is a risk factor for coronary arteriosclerosis in Japanese patients with type 2 diabetes. Diabetes Care. 1999, 22: 484-490.

Litherland GJ, Hajduch E, Gould GW, Hundal HS: Fructose transport and metabolism in adipose tissue of Zucker rats: diminished GLUT5 activity during obesity and insulin resistance. Mol Cell Biochem. 2004, 261: 23-33.

Catena C, Giacchetti G, Novello M, Colussi G, Cavarape A, Sechi LA: Cellular mechanisms of insulin resistance in rats with fructose-induced hypertension. Am J Hypertens. 2003, 16: 973-978.

Ueno M, Bezerra RM, Silva MS, Tavares DQ, Carvalho CR, Saad MJ: A high-fructose diet induces changes in pp185 phosphorylation in muscle and liver of rats. Braz J Med Biol Res. 2000, 33: 1421-1427.

Ziegler O, Quilliot D, Guerci B, Drouin P: [Macronutrients, fat mass, fatty acid flux and insulin sensitivity]. Diabetes Metab. 2001, 27: 261-270.

McClain DA: Hexosamines as mediators of nutrient sensing and regulation in diabetes. J Diabetes Complications. 2002, 16: 72-80.

Kok N, Roberfroid M, Delzenne N: Dietary oligofructose modifies the impact of fructose on hepatic triacylglycerol metabolism. Metabolism. 1996, 45: 1547-1550.

Brown MS, Goldstein JL: The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell. 1997, 89: 331-340.

Bennett MK, Lopez JM, Sanchez HB, Osborne TF: Sterol regulation of fatty acid synthase promoter. Coordinate feedback regulation of two major lipid pathways. J Biol Chem. 1995, 270: 25578-25583.

Miyazaki M, Dobrzyn A, Man WC, Chu K, Sampath H, Kim HJ, Ntambi JM: Stearoyl-CoA desaturase 1 gene expression is necessary for fructose-mediated induction of lipogenic gene expression by sterol regulatory element-binding protein-1c-dependent and -independent mechanisms. J Biol Chem. 2004, 279: 25164-25171.

Sewter C, Berger D, Considine RV, Medina G, Rochford J, Ciaraldi T, Henry R, Dohm L, Flier JS, O'Rahilly S, Vidal-Puig AJ: Human obesity and type 2 diabetes are associated with alterations in SREBP1 isoform expression that are reproduced ex vivo by tumor necrosis factor-alpha. Diabetes. 2002, 51: 1035-1041.

Kim JB, Sarraf P, Wright M, Yao KM, Mueller E, Solanes G, Lowell BB, Spiegelman BM: Nutritional and insulin regulation of fatty acid synthetase and leptin gene expression through ADD1/SREBP1. J Clin Invest. 1998, 101: 1-9.

Guillet-Deniau I, Mieulet V, Le Lay S, Achouri Y, Carre D, Girard J, Foufelle F, Ferre P: Sterol regulatory element binding protein-1c expression and action in rat muscles: insulin-like effects on the control of glycolytic and lipogenic enzymes and UCP3 gene expression. Diabetes. 2002, 51: 1722-1728.

Foretz M, Guichard C, Ferre P, Foufelle F: Sterol regulatory element binding protein-1c is a major mediator of insulin action on the hepatic expression of glucokinase and lipogenesis-related genes. Proc Natl Acad Sci U S A. 1999, 96: 12737-12742.

Boizard M, Le Liepvre X, Lemarchand P, Foufelle F, Ferre P, Dugail I: Obesity-related overexpression of fatty-acid synthase gene in adipose tissue involves sterol regulatory element-binding protein transcription factors. J Biol Chem. 1998, 273: 29164-29171.

Shimomura I, Bashmakov Y, Horton JD: Increased levels of nuclear SREBP-1c associated with fatty livers in two mouse models of diabetes mellitus. J Biol Chem. 1999, 274: 30028-30032.

Kotzka J, Lehr S, Roth G, Avci H, Knebel B, Muller-Wieland D: Insulin-activated Erk-mitogen-activated protein kinases phosphorylate sterol regulatory element-binding Protein-2 at serine residues 432 and 455 in vivo. J Biol Chem. 2004, 279: 22404-22411.

Roth G, Kotzka J, Kremer L, Lehr S, Lohaus C, Meyer HE, Krone W, Muller-Wieland D: MAP kinases Erk1/2 phosphorylate sterol regulatory element-binding protein (SREBP)-1a at serine 117 in vitro. J Biol Chem. 2000, 275: 33302-33307.

Matsuzaka T, Shimano H, Yahagi N, Amemiya-Kudo M, Okazaki H, Tamura Y, Iizuka Y, Ohashi K, Tomita S, Sekiya M: Insulin-independent induction of sterol regulatory element-binding protein-1c expression in the livers of streptozotocin-treated mice. Diabetes. 2004, 53: 560-569.

Shimizu S, Ugi S, Maegawa H, Egawa K, Nishio Y, Yoshizaki T, Shi K, Nagai Y, Morino K, Nemoto K: Protein-tyrosine phosphatase 1B as new activator for hepatic lipogenesis via sterol regulatory element-binding protein-1 gene expression. J Biol Chem. 2003, 278: 43095-43101.

Nagai Y, Nishio Y, Nakamura T, Maegawa H, Kikkawa R, Kashiwagi A: Amelioration of high fructose-induced metabolic derangements by activation of PPARalpha. Am J Physiol Endocrinol Metab. 2002, 282: E1180-1190.

Katsurada A, Iritani N, Fukuda H, Matsumura Y, Nishimoto N, Noguchi T, Tanaka T: Effects of nutrients and hormones on transcriptional and post-transcriptional regulation of fatty acid synthase in rat liver. Eur J Biochem. 1990, 190: 427-433.

Kazumi T, Odaka H, Hozumi T, Ishida Y, Amano N, Yoshino G: Effects of dietary fructose or glucose on triglyceride production and lipogenic enzyme activities in the liver of Wistar fatty rats, an animal model of NIDDM. Endocr J. 1997, 44: 239-245.

Herman RH, Zakim D, Stifel FB: Effect of diet on lipid metabolism in experimental animals and man. Fed Proc. 1970, 29: 1302-1307.

Hirsch J: Role and benefits of carbohydrate in the diet: key issues for future dietary guidelines. Am J Clin Nutr. 1995, 61: 996S-1000S.

Fried SK, Rao SP: Sugars, hypertriglyceridemia, and cardiovascular disease. Am J Clin Nutr. 2003, 78: 873S-880S.

Donnelly R, Reed MJ, Azhar S, Reaven GM: Expression of the major isoenzyme of protein kinase-C in skeletal muscle, nPKC theta, varies with muscle type and in response to fructose-induced insulin resistance. Endocrinology. 1994, 135: 2369-2374.

Koteish A, Diehl AM: Animal models of steatosis. Semin Liver Dis. 2001, 21: 89-104.

Bar A: Characteristics and significance of D-tagatose-induced liver enlargement in rats: An interpretative review. Regul Toxicol Pharmacol. 1999, 29: S83-93.

Parks EJ, Hellerstein MK: Carbohydrate-induced hypertriacylglycerolemia: historical perspective and review of biological mechanisms. Am J Clin Nutr. 2000, 71: 412-433.

Kazumi T, Vranic M, Steiner G: Triglyceride kinetics: effects of dietary glucose, sucrose, or fructose alone or with hyperinsulinemia. Am J Physiol. 1986, 250: E325-330.

Thorburn AW, Storlien LH, Jenkins AB, Khouri S, Kraegen EW: Fructose-induced in vivo insulin resistance and elevated plasma triglyceride levels in rats. Am J Clin Nutr. 1989, 49: 1155-1163.

Taghibiglou C, Carpentier A, Van Iderstine SC, Chen B, Rudy D, Aiton A, Lewis GF, Adeli K: Mechanisms of hepatic very low density lipoprotein overproduction in insulin resistance. Evidence for enhanced lipoprotein assembly, reduced intracellular ApoB degradation, and increased microsomal triglyceride transfer protein in a fructose-fed hamster model. J Biol Chem. 2000, 275: 8416-8425.

Taghibiglou C, Rashid-Kolvear F, Van Iderstine SC, Le-Tien H, Fantus IG, Lewis GF, Adeli K: Hepatic very low density lipoprotein-ApoB overproduction is associated with attenuated hepatic insulin signaling and overexpression of protein-tyrosine phosphatase 1B in a fructose-fed hamster model of insulin resistance. J Biol Chem. 2002, 277: 793-803.

Kelley GL, Allan G, Azhar S: High dietary fructose induces a hepatic stress response resulting in cholesterol and lipid dysregulation. Endocrinology. 2004, 145: 548-555.

Zammit VA, Waterman IJ, Topping D, McKay G: Insulin stimulation of hepatic triacylglycerol secretion and the etiology of insulin resistance. J Nutr. 2001, 131: 2074-2077.

Park OJ, Cesar D, Faix D, Wu K, Shackleton CH, Hellerstein MK: Mechanisms of fructose-induced hypertriglyceridaemia in the rat. Activation of hepatic pyruvate dehydrogenase through inhibition of pyruvate dehydrogenase kinase. Biochem J. 1992, 282 (Pt 3): 753-757.

Carmona A, Freedland RA: Comparison among the lipogenic potential of various substrates in rat hepatocytes: the differential effects of fructose-containing diets on hepatic lipogenesis. J Nutr. 1989, 119: 1304-1310.

Swanson JE, Laine DC, Thomas W, Bantle JP: Metabolic effects of dietary fructose in healthy subjects. Am J Clin Nutr. 1992, 55: 851-856.

Ostos MA, Recalde D, Baroukh N, Callejo A, Rouis M, Castro G, Zakin MM: Fructose intake increases hyperlipidemia and modifies apolipoprotein expression in apolipoprotein AI-CIII-AIV transgenic mice. J Nutr. 2002, 132: 918-923.

Noguchi T, Tanaka T: Insulin resistance in obesity and its molecular control. Obes Res. 1995, 3 (Suppl 2): 195S-198S.

Busserolles J, Gueux E, Rock E, Mazur A, Rayssiguier Y: Substituting honey for refined carbohydrates protects rats from hypertriglyceridemic and prooxidative effects of fructose. J Nutr. 2002, 132: 3379-3382.

Busserolles J, Gueux E, Rock E, Demigne C, Mazur A, Rayssiguier Y: Oligofructose protects against the hypertriglyceridemic and pro-oxidative effects of a high fructose diet in rats. J Nutr. 2003, 133: 1903-1908.

Thirunavukkarasu V, Anuradha CV: Influence of alpha-lipoic acid on lipid peroxidation and antioxidant defence system in blood of insulin-resistant rats. Diabetes Obes Metab. 2004, 6: 200-207.

Thirunavukkarasu V, Anitha Nandhini AT, Anuradha CV: Effect of alpha-lipoic acid on lipid profile in rats fed a high-fructose diet. Exp Diabesity Res. 2004, 5: 195-200.

den Boer M, Voshol PJ, Kuipers F, Havekes LM, Romijn JA: Hepatic steatosis: a mediator of the metabolic syndrome. Lessons from animal models. Arterioscler Thromb Vasc Biol. 2004, 24: 644-649.

Gordon DA, Jamil H: Progress towards understanding the role of microsomal triglyceride transfer protein in apolipoprotein-B lipoprotein assembly. Biochim Biophys Acta. 2000, 1486: 72-83.

Lin MC, Gordon D, Wetterau JR: Microsomal triglyceride transfer protein (MTP) regulation in HepG2 cells: insulin negatively regulates MTP gene expression. J Lipid Res. 1995, 36: 1073-1081.

Sato R, Miyamoto W, Inoue J, Terada T, Imanaka T, Maeda M: Sterol regulatory element-binding protein negatively regulates microsomal triglyceride transfer protein gene transcription. J Biol Chem. 1999, 274: 24714-24720.

Bartels ED, Lauritsen M, Nielsen LB: Hepatic expression of microsomal triglyceride transfer protein and in vivo secretion of triglyceride-rich lipoproteins are increased in obese diabetic mice. Diabetes. 2002, 51: 1233-1239.

Au WS, Kung HF, Lin MC: Regulation of microsomal triglyceride transfer protein gene by insulin in HepG2 cells: roles of MAPKerk and MAPKp38. Diabetes. 2003, 52: 1073-1080.

Reaven GM, Chen YD, Jeppesen J, Maheux P, Krauss RM: Insulin resistance and hyperinsulinemia in individuals with small, dense low density lipoprotein particles. J Clin Invest. 1993, 92: 141-146.

Verschoor L, Chen YD, Reaven EP, Reaven GM: Glucose and fructose feeding lead to alterations in structure and function of very low density lipoproteins. Horm Metab Res. 1985, 17: 285-288.

Rainwater DL, Mitchell BD, Comuzzie AG, Haffner SM: Relationship of low-density lipoprotein particle size and measures of adiposity. Int J Obes Relat Metab Disord. 1999, 23: 180-189.

Haidari M, Leung N, Mahbub F, Uffelman KD, Kohen-Avramoglu R, Lewis GF, Adeli K: Fasting and Postprandial Overproduction of Intestinally Derived Lipoproteins in an Animal Model of Insulin Resistance. EVIDENCE THAT CHRONIC FRUCTOSE FEEDING IN THE HAMSTER IS ACCOMPANIED BY ENHANCED INTESTINAL DE NOVO LIPOGENESIS AND ApoB48-CONTAINING LIPOPROTEIN OVERPRODUCTION. J Biol Chem. 2002, 277: 31646-31655.

Guo Q, Kohen-Avramoglu R, Adeli K: Intestinal assembly and secretion of highly dense/lipid-poor apolipoprotein B48-containing lipoprotein particles in the fasting state: Evidence for induction by insulin resistance and exogenous fatty acids. Metabolism.