From transition paths to transition states and rate coefficients

Journal of Chemical Physics - Tập 120 Số 2 - Trang 516-523 - 2004
Gerhard Hummer1
1Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 5 Bethesda, Maryland 20892-0520

Tóm tắt

Transition states are defined as points in configuration space with the highest probability that trajectories passing through them are reactive (i.e., form transition paths between reactants and products). In the high-friction (diffusive) limit of Langevin dynamics, the resulting ensemble of transition states is shown to coincide with the separatrix formed by points of equal commitment (or splitting) probabilities for reaching the product and reactant regions. Transition states according to the new criterion can be identified directly from equilibrium trajectories, or indirectly by calculating probability densities in the equilibrium and transition-path ensembles using umbrella and transition-path sampling, respectively. An algorithm is proposed to calculate rate coefficients from the transition-path and equilibrium ensembles by estimating the frequency of transitions between reactants and products.

Từ khóa


Tài liệu tham khảo

1978, J. Chem. Phys., 68, 2959, 10.1063/1.436049

1988, J. Chem. Phys., 92, 3711, 10.1021/j100324a007

1991, Ber. Bunsenges. Phys. Chem., 95, 331, 10.1002/bbpc.19910950318

1998, J. Chem. Phys., 108, 334, 10.1063/1.475393

1999, J. Phys. Chem. B, 103, 3706

2000, Proc. Natl. Acad. Sci. U.S.A., 97, 5877, 10.1073/pnas.100127697

2002, Annu. Rev. Phys. Chem., 53, 291, 10.1146/annurev.physchem.53.082301.113146

2002, Adv. Chem. Phys., 123, 1

1938, Phys. Rev., 54, 554, 10.1103/PhysRev.54.554

1998, Curr. Opin. Struct. Biol., 8, 68, 10.1016/S0959-440X(98)80012-2

1986, J. Chem. Phys., 85, 5045, 10.1063/1.451695

1998, J. Chem. Phys., 108, 1964, 10.1063/1.475562

1998, J. Chem. Phys., 108, 9236, 10.1063/1.476378

1987, Physica A, 142, 103, 10.1016/0378-4371(87)90019-7

1987, J. Stat. Phys., 49, 751, 10.1007/BF01009355

1994, J. Chem. Phys., 100, 334, 10.1063/1.467002

1961, Phys. Rev., 124, 983, 10.1103/PhysRev.124.983

2002, J. Chem. Phys., 117, 10789, 10.1063/1.1519861

1974, Chem. Phys. Lett., 28, 578, 10.1016/0009-2614(74)80109-0

1953, J. Chem. Phys., 21, 1087, 10.1063/1.1699114

1990, Rev. Mod. Phys., 62, 251, 10.1103/RevModPhys.62.251

1999, J. Chem. Phys., 110, 6617, 10.1063/1.478569

1999, J. Chem. Phys., 111, 9475, 10.1063/1.480278

2003, J. Chem. Phys., 118, 7762, 10.1063/1.1562614

2003, J. Chem. Phys., 118, 1085, 10.1063/1.1529192

1940, Physica (Amsterdam), 7, 284, 10.1016/S0031-8914(40)90098-2

1998, J. Chem. Phys., 109, 2325, 10.1063/1.476800

1979, J. Chem. Phys., 70, 4056, 10.1063/1.438028

1980, Acc. Chem. Res., 13, 440, 10.1021/ar50156a002

1986, J. Chem. Phys., 85, 1018, 10.1063/1.451844