From Pseudo-Objects in Dynamic Explorations to Proof by Contradiction
Tóm tắt
Từ khóa
Tài liệu tham khảo
Antonini, S. (2004). A statement, the contrapositive and the inverse: Intuition and argumentation. In M. Høines & B. Fuglestad (Eds.), Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 47–54). Bergen: Bergen University College.
Antonini, S. (2010). A model to analyse argumentations supporting impossibilities in mathematics. In I. M. Pinto & T. Kawasaki (Eds.), Proceedings of the 34th Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 153–160). Belo Horizonte: PME.
Antonini, S., & Mariotti, M. (2006). Reasoning in an absurd world: Difficulties with proof by contradiction. In J. Novotná, H. Moraová, M. Krátká, & N. Stehliková (Eds.), Proceedings of the 30th Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 65–72). Prague: Faculty of Education, Charles University.
Antonini, S., & Mariotti, M. (2007). Indirect proof: An interpreting model. In D. Pitta-Pantazi & G. Philippou (Eds.), Proceedings of the Fifth Congress of the European Society for Research in Mathematics Education (pp. 541–550). Larnaca: University of Cyprus/CERME.
Antonini, S., & Mariotti, M. (2008). Indirect proof: What is specific to this way of proving? ZDM Mathematics Education, 40(3), 401–412.
Baccaglini-Frank, A. (2010). Conjecturing in dynamic geometry: A model for conjecture-generation through maintaining dragging. Unpublished doctoral dissertation. Durham: University of New Hampshire.
Baccaglini-Frank, A., & Mariotti, M. (2010). Generating conjectures through dragging in dynamic geometry: The maintaining dragging model. International Journal of Computers for Mathematical Learning, 15(3), 225–253.
Baccaglini-Frank, A., Antonini, S., Leung, A., & Mariotti, M. (2011). Reasoning by contradiction in dynamic geometry. In B. Ubuz (Ed.), Proceedings of the 35rd Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 81–88). Ankara: PME.
Baccaglini-Frank, A., Antonini, S., Leung, A., & Mariotti, M. (2013). Reasoning by contradiction in dynamic geometry. PNA: Revista de Investigación en Didáctica de la Matemática, 7(2), 63–73.
Baccaglini-Frank, A., Antonini, S., Leung, A., & Mariotti, M. (2017). Designing non-constructability tasks in a dynamic geometry environment. In A. Leung & A. Baccaglini-Frank (Eds.), Digital technologies in designing mathematics education tasks: Potential and pitfalls (pp. 99–120). Cham: Springer.
Boero, P. (Ed.). (2007). Theorems in school: From history, epistemology and cognition to classroom practice (pp. 249–264). Rotterdam: Sense Publishers.
Boero, P., Garuti, R., & Mariotti, M. (1996). Some dynamic mental process underlying producing and proving conjectures. In A. Gutiérrez & L. Puig (Eds.), Proceedings of the 20th Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 121–128). Valencia: Departamento de Didáctica de la Matemática, Universita de València.
de Villiers, M. (2004). Using dynamic geometry to expand mathematics teachers’ understanding of proof. International Journal of Mathematical Education in Science and Technology, 35(5), 703–724.
Duval, R. (1993). Argumenter, démontrer, expliquer: Continuité ou rupture cognitive? Petit x, 31, 37–61.
Freudenthal, H. (1973). Mathematics as an educational task. Dordrecht: D. Reidel.
Garuti, R., Boero, P., Lemut, E., & Mariotti, M. (1996). Challenging the traditional school approach to theorems: A hypothesis about the cognitive unity of theorems. In A. Gutiérrez & L. Puig (Eds.), Proceedings of the 20th Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 113–120). Valencia: Departamento de Didáctica de la Matemática, Universita de València.
Hanna, G., & de Villiers, M. (Eds.). (2012). Proof and proving in mathematics education: The 19th ICMI study. Dordrecht: Springer.
Healy, L. (2000). Identifying and explaining geometric relationship: Interactions with robust and soft Cabri constructions. In T. Nakahara & M. Koyama (Eds.), Proceedings of the 24th Conference of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 103–117). Hiroshima: PME.
Laborde, C. (2000). Dynamic geometry environments as a source of rich learning contexts for the complex activity of proving. Educational Studies in Mathematics, 44(1–3), 151–161.
Laborde, C., & Laborde, J.-M. (1992). Problem solving in geometry: From microworlds to intelligent computer environments. In J. Ponte, J. Matos, J. Matos, & D. Fernandes (Eds.), Mathematical problem solving and new information technologies (pp. 177–192). Berlin: Springer-Verlag.
Laborde, J.-M., & Sträßer, R. (1990). Cabri-géomètre: A microworld of geometry for guided discovery learning. ZDM Mathematics Education, 22(5), 171–177.
Leron, U. (1985). A direct approach to indirect proofs. Educational Studies in Mathematics, 16(3), 321–325.
Leung, A., & Lopez-Real, F. (2002). Theorem justification and acquisition in dynamic geometry: A case of proof by contradiction. International Journal of Computers for Mathematical Learning, 7(2), 145–165.
Leung, A., Baccaglini-Frank, A., & Mariotti, M. (2013). Discernment in dynamic geometry environments. Educational Studies in Mathematics, 84(3), 439–460.
Mariotti, M. (2000). Introduction to proof: The mediation of a dynamic software environment. Educational Studies in Mathematics, 44(1–3), 25–53.
Mariotti, M. (2002). The influence of technological advances on students’ mathematical learning. In L. English (Ed.), Handbook of international research in mathematics education (pp. 695–723). Mahwah: Lawrence Erlbaum Associates.
Mariotti, M. (2014). Transforming images in a DGS: The semiotic potential of the dragging tool for introducing the notion of conditional statement. In S. Rezat, M. Hattermann, & A. Peter-Koop (Eds.), Transformation: A fundamental idea of mathematics education (pp. 156–175). New York: Springer.
Mariotti, M., & Antonini, S. (2009). Breakdown and reconstruction of figural concepts in proofs by contradiction in geometry. In F.-L. Lin, F. Hsieh, G. Hanna, & M. de Villers (Eds.), Proof and proving in mathematics education: ICMI Study 19 Conference Proceedings (Vol. 2, pp. 82–87). Taipei: National Taiwan Normal University.
Nachlieli, T., & Tabach, M. (2012). Growing mathematical objects in the classroom: The case of function. International Journal of Educational Research, 51–52, 10–27.
Pedemonte, B. (2007). How can the relationship between argumentation and proof be analysed? Educational Studies in Mathematics, 66(1), 23–41.
Sinclair, N., & Robutti, O. (2013). Technology and the role of proof: The case of dynamic geometry. In M. Clements, A. Bishop, C. Keitel-Kreidt, J. Kilpatrick, & F. Leung (Eds.), Third international handbook of mathematics education (pp. 571–596). New York: Springer.
Stylianides, A., Bieda, K., & Morselli, F. (2016). Proof and argumentation in mathematics education research. In A. Gutiérrez, G. Leder, & P. Boero (Eds.), The second handbook on the psychology of mathematics education: The journey continues (pp. 315–351). Rotterdam: Sense Publishers.
Vinner, S. (1999). The possible and the impossible (a review of G. Martin, 1998, Geometric constructions). ZDM Mathematics Education, 31(2), 77.
Wu Yu, J.-Y., Lin, F.-L., & Lee, Y.-S. (2003). Students’ understanding of proof by contradiction. In N. Pateman, B. Dougherty, & J. Zilliox (Eds.), Proceedings of the 2003 Joint Meeting of PME and PME-NA (Vol. 4, pp. 443–449). Honolulu: College of Education, University of Hawaii.