From Experiences in a Dynamic Environment to Written Narratives on Functions

Samuele Antonini1, Anna Baccaglini-Frank2, Giulia Lisarelli2
1Department of Mathematics “F. Casorati”, University of Pavia, Pavia, Italy
2Department of Mathematics, University of Pisa, Pisa, Italy

Tóm tắt

Từ khóa


Tài liệu tham khảo

Baccaglini-Frank, A., & Mariotti, M. A. (2010). Generating conjectures in dynamic geometry: The maintaining dragging model. International Journal of Computers for Mathematical Learning, 15(3), 225–253.

Carlson, M. P. (1998). A cross-sectional investigation of the development of the function concept. In A. H. Schoenfeld, J. Kaput, & E. Dubinsky (Eds.), Research in collegiate mathematics education. III. CBMS issues in mathematics education (pp. 114–162). Providence: American Mathematical Society.

Carlson, M. P. & Oehrtman, M. (2005). Key aspects of knowing and learning the concept of function. Research Sampler 9. MAA Notes.

Carlson, M. P. Jacobs, S., Coe, E., Larsen, S., & Hsu, E. (2002). Applying covariational reasoning while modeling dynamic events: A framework and a study. Journal for Research in Mathematics Education, 33(5), 352–378.

Colacicco, G., Lisarelli, G., & Antonini, S. (2017). Funzioni e grafici in ambienti digitali dinamici. Didattica della Matematica: dalla ricerca alle pratiche d’aula, 2, 7–25.

Falcade, R., Laborde, C., & Mariotti, M. A. (2007). Approaching functions: Cabri tools as instruments of semiotic mediation. Educational Studies in Mathematics, 66(3), 317–333.

Goldenberg, E. P., Lewis, P., & O’Keefe, J. (1992). Dynamic representation and the development of an understanding of functions. In G. Harel & E. Dubinsky (Eds.), The Concept of Function: Aspects of Epistemology and Pedagogy, 25. MAA Notes.

Healy, L., & Sinclair, N. (2007). If this is your mathematics, what are your stories? International Journal of Computers for Mathematics Learning, 12(1), 3–21.

Kaput, J. (1992). Patterns in students' formalization of quantitative patterns. In G. Harel & E. Dubinsky (Eds.), The concept of function: Aspects of epistemology and pedagogy, 25. Washington D.C.: MAA.

Lavie, I., Steiner, A., & Sfard, A. (2018). Routines we live by: From ritual to exploration. Educational Studies in Mathematics, 1–24.

Lisarelli, G. (2017). Exploiting potentials of dynamic representations of functions with parallel axes. In Proceedings of the 13thinternational conference on Technology in Mathematics Teaching (Vol. 1, pp. 144–150). Lyon: ICTMT.

Lisarelli, G. (2018). How dragging mediates discourse about functions. In E. Bergqvist, M. Österholm, C. Granberg, & L. Sumpter (Eds.), Proceedings of the 42nd conference of the IGPME (Vol. 3, pp. 323–330). Umeå: PME.

Lisarelli, G., Antonini, S., & Baccaglini-Frank, A. (in press). Capturing ‘time’: Characteristics of students’ written discourse on dynagraphs. In U. T. Jankvist, M. van den Heuvel–Panhuizen, & M. Veldhuis (Eds.), Proceedings of the 11thCongress of the European Society for Research in Mathematics Education. Utrecht: Freundenthal Group & Freundenthal Institute, Utrecht University and ERME.

Mason, J., & Pimm, D. (1984). Generic examples: Seeing the general in the particular. Educational Studies in Mathematics, 15(3), 277–289.

Monk, S., & Nemirovsky, R. (1994). The case of Dan: Student construction of a functional situation through visual attributes. In E. Dubinsky, A. H. Schoenfeld, & J. Kaput (Eds.), Research in collegiate mathematics education. I. CBMS issues in mathematics education (pp. 139–168). Providence: American Mathematical Society.

Ng, O. (2016). Comparing calculus communication across static and dynamic environments using a multimodal approach. Digital Experiences in Mathematics Education, 2(2), 115–141.

Sfard, A. (2008). Thinking as communicating: Human development, the growth of discourses, and mathematizing. Cambridge: Cambridge University Press.

Sinclair, N., Healy, L., & Reis Sales, C. (2009). Time for telling stories: Narrative thinking with dynamic geometry. Zentralblatt für Didaktik der Mathematik, 41(4), 441–452.

Thompson, P. W. (1994). Images of rate and operational understanding of the fundamental theorem of calculus. Educational Studies in Mathematics, 26, 229–274.