Fresh banana pseudo-stems as a tropical lignocellulosic feedstock for methane production

Energy, Sustainability and Society - Tập 6 - Trang 1-9 - 2016
Chao Li1,2, Gangjin Liu2,3, Ivo A. Nges1, Liangwei Deng2, Mihaela Nistor3, Jing Liu1,3
1Department of Biotechnology, Lund University, Lund, Sweden
2Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture, Chengdu, China
3Bioprocess Control, Lund, Sweden

Tóm tắt

The banana pseudo-stem is a low-lignin-content lignocellulosic biomass that can be used for methane production. In recent years, anaerobic digestion (AD) of dried banana stems for methane production has attracted considerable attention. However, there is limited information regarding methane production from the fresh banana pseudo-stem. The direct usability of fresh banana stems as a resource for renewable energy production through AD is a called upon prerequisite for an improved waste management system culminating in a sustainable as well as socioeconomic development of local banana-producing communities. In this study, three series of experiments were performed simultaneously to investigate the methane production from fresh banana pseudo-stems for the first time. The tests included size reduction, enzyme addition, and co-digestion of banana stems with cow manure. The achieved methane yields were 287, 340, to 347 mL g−1 volatile solids for the banana stem with particle sizes of 5, 10, and 20 mm, respectively. The highest yield was obtained at the particle size of 20 mm, showing a 21 % increase compared to the particle size of 5 mm. However, the particle size of 5 mm showed a high initial rate of hydrolysis evident by the highest hydrolysis rate constant of 0.152 d−1 as compared to 0.110 d−1 for the 20-mm particle size. The addition of enzyme and co-digestion improved the rate of hydrolysis evident by a high rate constant as compared to the control though there was no improvement in the ultimate methane production. This study demonstrates the usability of the fresh banana stem for efficient and high methane production after simply applying a minimal size reduction. The implementation of such a study will benefit society especially rural banana-producing areas both toward renewable energy generation and sustainable waste management. These could lead to job creation and an improved standard of living.

Tài liệu tham khảo

Padam BS, Tin HS, Chye FY, Abdullah MI (2014) Banana by-products: an under-utilized renewable food biomass with great potential. J Food Sci Technol 51(12):3527–3545 Yamaguchi J, Araki S (2004) Biomass production of banana plants in the indigenous farming system of the East African Highland: a case study on the Kamachumu Plateau in northwest Tanzania. Agric Ecosyst Environ 102(1):93–111 Mohapatra D, Mishra S, Sutar N (2010) Banana and its by-product utilization: an overview. J Sci Ind Res 69(5):323–329 Neves LC M d, Converti A, Vessoni Penna TC (2009) Biogas production: new trends for alternative energy sources in rural and urban zones. Chem Eng Technol 32(8):1147–1153 Scholz M, Alders M, Lohaus T, Wessling M (2015) Structural optimization of membrane-based biogas upgrading processes. J Membr Sci 474:1–10 Zhang C, Li J, Liu C, Liu X, Wang J, Li S, Fan G, Zhang L (2013) Alkaline pretreatment for enhancement of biogas production from banana stem and swine manure by anaerobic codigestion. Bioresour Technol 149:353–358 Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9(9):1621–1651 Parawira W (2012) Enzyme research and applications in biotechnological intensification of biogas production. Crit Rev Biotechnol 32(2):172–186 Herbel Z, Rákhely G, Bagi Z, Ivanova G, Ács N, Kovács E, Kovács KL (2010) Exploitation of the extremely thermophilic Caldicellulosiruptor saccharolyticus in hydrogen and biogas production from biomasses. Environ Technol 31(8-9):1017–1024 Wang H, Tao Y, Temudo M, Schooneveld M, Bijl H, Ren N, Wolf M, Heine C, Foerster A, Pelenc V (2015) An integrated approach for efficient biomethane production from solid bio-wastes in a compact system. Biotechnol for biofuels 8(1):1 Gianfreda L, Rao MA (2004) Potential of extra cellular enzymes in remediation of polluted soils: a review. Enzym Microb Technol 35(4):339–354 Pei P, Zhang C, Li J, Chang S, Li S, Wang J, Zhao M, Li J, Yu M, Chen X (2014) Optimization of NaOH pretreatment for enhancement of biogas production of banana pseudo-stem fiber using response surface methodology. Bio Resources 9(3):5073–5087 Scano EA, Asquer C, Pistis A, Ortu L, Demontis V, Cocco D (2014) Biogas from anaerobic digestion of fruit and vegetable wastes: experimental results on pilot-scale and preliminary performance evaluation of a full-scale power plant. Energy Convers Manag 77:22–30 Nges IA, Escobar F, Fu X, Björnsson L (2012) Benefits of supplementing an industrial waste anaerobic digester with energy crops for increased biogas production. Waste Manage 32(1):53–59 Tock JY, Lai CL, Lee KT, Tan KT, Bhatia S (2010) Banana biomass as potential renewable energy resource: a Malaysian case study. Renew Sust Energ Rev 14(2):798–805 Kamdem I, Hiligsmann S, Vanderghem C, Bilik I, Paquot M, Thonart P (2013) Comparative biochemical analysis during the anaerobic digestion of lignocellulosic biomass from six morphological parts of Williams Cavendish banana (Triploid Musa AAA group) plants. World J Microbiol Biotechnol 29(12):2259–2270 Raposo F, De la Rubia M, Fernández-Cegrí V, Borja R (2012) Anaerobic digestion of solid organic substrates in batch mode: an overview relating to methane yields and experimental procedures. Renew Sust Energ Rev 16(1):861–877 Badshah M, Lam DM, Liu J, Mattiasson B (2012) Use of an automatic methane potential test system for evaluating the biomethane potential of sugarcane bagasse after different treatments. Bioresour Technol 114:262–269 APHA (2005) Total, fixed, and volatile solids in solid and semisolid samples. In: Eaton AD, Clesceri LS, Rice EW, Greenberg AE, Franson MA (eds) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association/American Water Works Association/Water Environment Federation, Baltimore Van Soest PV, Robertson J, Lewis B (1991) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 74(10):3583–3597 Angelidaki I, Alves M, Bolzonella D, Borzacconi L, Campos J, Guwy A, Kalyuzhnyi S, Jenicek P, Van Lier J (2009) Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Sci Technol 59(5):927–934 Kreuger E, Sipos B, Zacchi G, Svensson S-E, Björnsson L (2011) Bioconversion of industrial hemp to ethanol and methane: the benefits of steam pretreatment and co-production. Bioresour Technol 102(3):3457–3465 Raposo F, Fernández‐Cegrí V, De la Rubia M, Borja R, Béline F, Cavinato C, Demirer G, Fernández B, Fernández‐Polanco M, Frigon J (2011) Biochemical methane potential (BMP) of solid organic substrates: evaluation of anaerobic biodegradability using data from an international interlaboratory study. J Chem Technol Biotechnol 86(8):1088–1098 Oliveira L, Cordeiro N, Evtuguin D, Torres I, Silvestre A (2007) Chemical composition of different morphological parts from ‘Dwarf Cavendish’ banana plant and their potential as a non-wood renewable source of natural products. Ind Crop Prod 26(2):163–172 Angelidaki I, Ellegaard L (2003) Codigestion of manure and organic wastes in centralized biogas plants. Appl Biochem Biotechnol 109(1-3):95–105 Shen S, Nges IA, Yun J, Liu J (2014) Pre-treatments for enhanced biochemical methane potential of bamboo waste. Chem Eng J 240:253–259 Li M-F, Fan Y-M, Xu F, Sun R-C, Zhang X-L (2010) Cold sodium hydroxide/urea based pretreatment of bamboo for bioethanol production: characterization of the cellulose rich fraction. Ind Crop Prod 32(3):551–559 Cordeiro N, Belgacem M, Torres I, Moura J (2004) Chemical composition and pulping of banana pseudo-stems. Ind Crop Prod 19(2):147–154 Izumi K, Okishio Y-k, Nagao N, Niwa C, Yamamoto S, Toda T (2010) Effects of particle size on anaerobic digestion of food waste. Int Biodeter Biodegr 64(7):601–608 Tumutegyereize P, Muranga F, Kawongolo J, Nabugoomu F (2013) Optimization of biogas production from banana peels: effect of particle size on methane yield. Afr J Biotechnol 10(79):18243–18251 Romano RT, Zhang R, Teter S, McGarvey JA (2009) The effect of enzyme addition on anaerobic digestion of JoseTall Wheat Grass. Bioresour Technol 100(20):4564–4571 Yang B, Dai Z, Ding S-Y, Wyman CE (2011) Enzymatic hydrolysis of cellulosic biomass. Biofuels 2(4):421–449 El-Mashad HM, Zhang R (2010) Biogas production from co-digestion of dairy manure and food waste. Bioresour Technol 101(11):4021–4028 Lehtomäki A, Huttunen S, Rintala J (2007) Laboratory investigations on co-digestion of energy crops and crop residues with cow manure for methane production: effect of crop to manure ratio. Resour Conserv Recycl 51(3):591–609 Kalia V, Sonakya V, Raizada N (2000) Anaerobic digestion of banana stem waste. Bioresour Technol 73(2):191–193 Cheng S, Li Z, Xu C, Yang L (2009) Experimental study on biochemical methane potential of banana tree waste Khan MT, Maurer C, Argyropoulos D, Brule M, Mueller J (2009) Anaerobic digestion of banana waste, a potential source of energy in Uganda. In: Proceedings Tropentag (2009): International Research and Food Security Zainol N (2012) Kinetics of biogas production from banana stem waste. InTech, Biogas Europe, p 408 Hernández-Berriel MC, Márquez-Benavides L, González-Pérez D, Buenrostro-Delgado O (2008) The effect of moisture regimes on the anaerobic degradation of municipal solid waste from Metepec (Mexico). Waste Manage 28:S14–S20 Pommier S, Chenu D, Quintard M, Lefebvre X (2007) A logistic model for the prediction of the influence of water on the solid waste methanization in landfills. Biotechnol Bioeng 97(3):473–482 Bourgeois C, Mescle J, Zucca J (1996) Microbiologie alimentaire. Lavoisier, Tome 1 Paris, p 672 Pommier S, Chenu D, Quintard M, Lefebvre X (2007) A logistic model for the prediction of the influence of water on the solid waste methanization in landfills. Biotechnol Bioeng 97:473–482