Frequency, distribution and immunologic nature of infusion reactions in subjects receiving pegloticase for chronic refractory gout
Tóm tắt
To assess frequency and distribution of infusion reactions (IRs) in responders and nonresponders in randomized clinical trials (RCTs) of intravenous pegloticase and the utility of the National Institute of Allergy and Infectious Disease/Food and Allergy and Anaphylaxis Network (NIAID/FAAN) criteria for identifying anaphylaxis in subjects experiencing IRs. IRs from two RCTs of pegloticase were evaluated and categorized as anaphylaxis, hypersensitivity, or other. Serum levels of tryptase and total hemolytic complement (CH50) were evaluated at the time of all IRs. Frequency of IRs by each category was evaluated in all subjects, responders or nonresponders to pegloticase. There were 113 IRs in 1695 infusions. Of the 113 IRs, 6 met criteria for anaphylaxis, 53 had one feature of anaphylaxis and were designated as “hypersensitivity”, and 54 had no features and were designated “other”. In subjects receiving pegloticase every 2 weeks (Q2w), a total of 852 infusions were administered and the IR frequency was 0.5% in responders and 9.7% in nonresponders. In subjects receiving pegloticase every 4 weeks (Q4w), a total of 846 infusions were given and the IR frequency was 2.6% in responders and 12.2% in nonresponders. There were no differences among the three categories of IRs with regard to clinical course or biochemical evidence of immune activation determined by CH50 or tryptase levels. IRs mostly occurred in nonresponders. NIAID/FAAN criteria for anaphylaxis did not identify pegloticase-related IRs as having a higher frequency of immune activation or a more severe course. The results are consistent with the conclusion that discontinuance of pegloticase if uric acid rises to >6 mg/dL will decrease the frequency of IRs.
Tài liệu tham khảo
Sundy JS, Ganson NJ, Kelly SJ, Scarlett EL, Rehrig CD, Huang W, et al. Pharmacokinetics and pharmacodynamics of intravenous PEGylated recombinant mammalian urate oxidase in patients with refractory gout. Arthritis Rheum. 2007;56:1021–8.
KRYSTEXXA™ (pegloticase) Injection, for intravenous infusion. 2016. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2010/125293s0000lbl.pdf. Accessed 3 Aug 2017.
Sundy JS, Baraf HS, Yood RA, Edwards NL, Gutierrez-Urena SR, Treadwell EL, et al. Efficacy and tolerability of pegloticase for the treatment of chronic gout in patients refractory to conventional treatment: two randomized controlled trials. JAMA. 2011;306:711–20.
Barah HS, Yood RA, Ottery FD, Sundy JS, Becker MA. Infusion-related reactions with pegloticase, a recombinant uricase for the treatment of chronic gout refractory to conventional therapy. J Clin Rheumatol. 2014;20:427–32.
Lipsky PE, Calabrese LH, Kavanaugh A, Sundy JS, Wright D, Wolfson M, et al. Pegloticase immunogenicity: the relationship between efficacy and antibody development in patients treated for refractory chronic gout. Arthritis Res Ther. 2014;16:R60.
Manivannan V, Decker WW, Stead LG, Li JT, Campbell RL. Visual representation of National Institute of Allergy and Infectious Disease and Food Allergy and Anaphylaxis Network criteria for anaphylaxis. Int J Emerg Med. 2009;2:3–5.
Campbell RL, Hagan JB, Manivannan V, Decker WW, Kanthala AR, Bellolio MF, et al. Evaluation of national institute of allergy and infectious diseases/food allergy and anaphylaxis network criteria for the diagnosis of anaphylaxis in emergency department patients. J Allergy Clin Immunol. 2012;129:748–52.
Brauer CE, Motosue MS, Li JT, Hagan JB, Bellolio MF, Lee S, et al. Prospective validation of the NIAID/FAAN criteria for emergency department diagnosis of anaphylaxis. J Allergy Clin Immunol Pract. 2016;4:1220–6.
Lieberman P, Nicklas RA, Randolph C, Oppenheimer J, Bernstein D, Bernstein J, et al. Anaphylaxis–a practice parameter update 2015. Ann Allergy Asthma Immunol. 2015;115:341–84.
Becker MA, Baraf HS, Yood RA, Dillon A, Vázquez-Mellado J, Ottery FD, et al. Long-term safety of pegloticase in chronic gout refractory to conventional treatment. Ann Rheum Dis. 2013;72:1469–74.
Camargo Jr CA. Potter Stewart and the definition of anaphylaxis [editorial]. J Allergy Clin Immunol. 2012;129:753–4.
Payne V, Kam PC. Mast cell tryptase: a review of its physiology and clinical significance. Anaesthesia. 2004;59:695–703.
Brown SG, Blackman KE, Heddle RJ. Can serum mast cell tryptase help diagnose anaphylaxis? Emerg Med Australas. 2004;16:120–4.
Sala-Cunill A, Cardona V, Labrador-Horrillo M, Luengo O, Esteso O, Garriga T, et al. Usefulness and limitations of sequential serum tryptase for the diagnosis of anaphylaxis in 102 patients. Int Arch Allergy Immunol. 2013;160:192–9.
Tannenbaum H, Ruddy S, Schur PH. Acute anaphylaxis associated with serum complement depletion. J Allergy Clin Immunol. 1975;56:226–34.
Lasser EC, Lang JH, Lyon SG, Hamblin AE. Changes in complement and coagulation factors in a patient suffering a severe anaphylactoid reaction to injected contrast material: some considerations of pathogenesis. Invest Radiol. 1980;15(6 Suppl):S6–12.