Dao động tự do của các tấm bánh sandwich FG được hỗ trợ một phần bởi nền đàn hồi bằng cách sử dụng phương pháp phần tử hữu hạn quasi-3D

Vietnam Journal of Mechanics - Tập 42 Số 1 - Trang 63-86 - 2020
Le Cong Ich1, Pham Vu Nam2, Nguyen Dinh Kien3
1Le Quy Don Technical University, Hanoi, Vietnam
2Thuyloi University, Hanoi, Vietnam
3Institute of Mechanics, VAST, Hanoi, Vietnam

Tóm tắt

Bài báo này nghiên cứu dao động tự do của các tấm bánh sandwich chức năng nhiều cấp (FG) được hỗ trợ một phần bởi nền đàn hồi Pasternak. Các tấm này bao gồm ba lớp, cụ thể là một lớp lõi gốm nguyên chất và hai lớp vỏ chức năng nhiều cấp. Các thuộc tính vật liệu hiệu quả của các lớp vỏ được xem xét thay đổi theo độ dày tấm theo một quy luật phân bố lực tác dụng, và chúng được ước lượng bằng phương pháp Mori-Tanaka. Lý thuyết biến dạng cắt quasi-3D, mà tính đến hiệu ứng giãn nở theo chiều dày, được áp dụng để xây dựng phương pháp phần tử hữu hạn nhằm tính toán các đặc trưng dao động. Độ chính xác của phương pháp đã được xác nhận thông qua một nghiên cứu so sánh. Kết quả số hiệu cho thấy khu vực hỗ trợ của nền có vai trò quan trọng trong hành vi dao động của các tấm, và tác động của tỷ lệ độ dày lớp đối với tần số được điều khiển bởi khu vực hỗ trợ. Một nghiên cứu tham số được thực hiện để làm nổi bật ảnh hưởng của phân bố vật liệu, tỷ lệ độ dày lớp, độ cứng của nền và diện tích hỗ trợ nền đến tần số và hình dạng chế độ của các tấm. Ảnh hưởng của tỷ lệ chiều ngang trên độ dày đến tần số của các tấm cũng được kiểm tra và thảo luận.

Từ khóa

#FG sandwich plate #Pasternak foundation #Mori-Tanaka scheme #quasi-3D theory #free vibration #finite element formulation

Tài liệu tham khảo

Y. Fukui. Fundamental investigation of functionally gradient material manufacturing system using centrifugal force. Japan Society of Mechanical Engineering International Journal, Series III, 34, (1), (1991), pp. 144–148. https://doi.org/10.1299/jsmec1988.34.144.

D. K. Jha, T. Kant, and R. K. Singh. A critical review of recent research on functionally graded plates. Composite Structures, 96, (2013), pp. 833–849. https://doi.org/10.1016/j.compstruct.2012.09.001.

K. Swaminathan, D. T. Naveenkumar, A. M. Zenkour, and E. Carrera. Stress, vibration and buckling analyses of FGM plates—A state-of-the-art review. Composite Structures, 120, (2015), pp. 10–31. https://doi.org/10.1016/j.compstruct.2014.09.070.

G. N. Praveen and J. N. Reddy. Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates. International Journal of Solids and Structures, 35, (33), (1998), pp. 4457–4476. https://doi.org/10.1016/s0020-7683(97)00253-9.

A. M. Zenkour. A comprehensive analysis of functionally graded sandwich plates: Part 1–Deflection and stresses. International journal of solids and structures, 42, (18-19), (2005), pp. 5224–5242. https://doi.org/10.1016/j.ijsolstr.2005.02.015.

A. M. Zenkour. A comprehensive analysis of functionally graded sandwich plates: Part 2–Buckling and free vibration. International Journal of Solids and Structures, 42, (18-19), (2005), pp. 5243–5258. https://doi.org/10.1016/j.ijsolstr.2005.02.016.

A. M. Zenkour and M. Sobhy. Thermal buckling of various types of FGM sandwich plates. Composite Structures, 93, (1), (2010), pp. 93–102. https://doi.org/10.1016/j.compstruct.2010.06.012.

S. Xiang, Y. Jin, Z. Bi, S. Jiang, and M. Yang. A n-order shear deformation theory for free vibration of functionally graded and composite sandwich plates. Composite Structures, 93, (11), (2011), pp. 2826–2832. https://doi.org/10.1016/j.compstruct.2011.05.022.

S. Xiang, G. Kang, M. Yang, and Y. Zhao. Natural frequencies of sandwich plate with functionally graded face and homogeneous core. Composite Structures, 96, (2013), pp. 226–231. https://doi.org/10.1016/j.compstruct.2012.09.003.

A. M. A. Neves, A. J. M. Ferreira, E. Carrera, M. Cinefra, C. M. C. Roque, R. M. N. Jorge, and C. M. M. Soares. Static, free vibration and buckling analysis of isotropic and sandwich functionally graded plates using a quasi-3D higher-order shear deformation theory and a meshless technique. Composites Part B: Engineering, 44, (1), (2013), pp. 657–674. https://doi.org/10.1016/j.compositesb.2012.01.089.

H.-T. Thai and D.-H. Choi. Finite element formulation of various four unknown shear deformation theories for functionally graded plates. Finite Elements in Analysis and Design, 75, (2013), pp. 50–61. https://doi.org/10.1016/j.finel.2013.07.003.

H.-T. Thai and S.-E. Kim. A simple higher-order shear deformation theory for bending and free vibration analysis of functionally graded plates. Composite Structures, 96, (2013), pp. 165–173. https://doi.org/10.1016/j.compstruct.2012.08.025.

H.-T. Thai and S.-E. Kim. A simple quasi-3D sinusoidal shear deformation theory for functionally graded plates. Composite Structures, 99, (2013), pp. 172–180. https://doi.org/10.1016/j.compstruct.2012.11.030.

H.-T. Thai, T.-K. Nguyen, T. P. Vo, and J. Lee. Analysis of functionally graded sandwich plates using a new first-order shear deformation theory. European Journal of Mechanics-A/Solids, 45, (2014), pp. 211–225. https://doi.org/10.1016/j.euromechsol.2013.12.008.

L. Iurlaro, M. Gherlone, and M. Di Sciuva. Bending and free vibration analysis of functionally graded sandwich plates using the refined zigzag theory. Journal of Sandwich Structures & Materials, 16, (6), (2014), pp. 669–699. https://doi.org/10.1177/1099636214548618.

S. Pandey and S. Pradyumna. Analysis of functionally graded sandwich plates using a higher-order layerwise theory. Composites Part B: Engineering, 153, (2018), pp. 325–336. https://doi.org/10.1016/j.compositesb.2018.08.121.

Z. Belabed, A. A. Bousahla, M. S. A. Houari, A. Tounsi, and S. Mahmoud. A new 3-unknown hyperbolic shear deformation theory for vibration of functionally graded sandwich plate. Earthquakes and Structures, 14, (2), (2018), pp. 103–115. https://doi.org/10.12989/eas.2018.14.2.103.

A. A. Daikh and A. M. Zenkour. Effect of porosity on the bending analysis of various functionally graded sandwich plates. Materials Research Express, 6, (6), (2019), p. 065703. https://doi.org/10.1088/2053-1591/ab0971.

C. F. L¨ u, C.W. Lim, andW. Q. Chen. Exact solutions for free vibrations of functionally graded thick plates on elastic foundations. Mechanics of Advanced Materials and Structures, 16, (8), (2009), pp. 576–584. https://doi.org/10.1080/15376490903138888.

S. Benyoucef, I. Mechab, A. Tounsi, A. Fekrar, H. A. Atmane, E. A. A. Bedia, Bending of thick functionally graded plates resting on Winkler–Pasternak elastic foundations. Mechanics of Composite Materials, 46, (4), (2010), pp. 425–434. https://doi.org/10.1007/s11029-010-9159-5.

M. Sobhy. Buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions. Composite Structures, 99, (2013), pp. 76–87. https://doi.org/10.1016/j.compstruct.2012.11.018.

S. A. Al Khateeb and A. M. Zenkour. A refined four-unknown plate theory for advanced plates resting on elastic foundations in hygrothermal environment. Composite Structures, 111, (2014), pp. 240–248. https://doi.org/10.1016/j.compstruct.2013.12.033.

H. V. Tung. Thermal and thermomechanical postbuckling of FGM sandwich plates resting on elastic foundations with tangential edge constraints and temperature dependent properties. Composite Structures, 131, (2015), pp. 1028–1039. https://doi.org/10.1016/j.compstruct.2015.06.043.

N. M. Khoa and H. V. Tung. Nonlinear thermo-mechanical stability of shear deformable FGM sandwich shallow spherical shells with tangential edge constraints. Vietnam Journal of Mechanics, 39, (4), (2017), pp. 351–364. https://doi.org/10.15625/0866-7136/9810.

S. S. Akavci. Mechanical behavior of functionally graded sandwich plates on elastic foundation. Composites Part B: Engineering, 96, (2016), pp. 136–152. https://doi.org/10.1016/j.compositesb.2016.04.035.

R. Benferhat, T. H. Daouadji, and M. S. Mansour. Free vibration analysis of FG plates resting on an elastic foundation and based on the neutral surface concept using higher-order shear deformation theory. Comptes Rendus Mecanique, 344, (9), (2016), pp. 631–641. https://doi.org/10.12989/eas.2016.10.5.1033.

A. Benahmed, M. S. A. Houari, S. Benyoucef, K. Belakhdar, and A. Tounsi. A novel quasi-3D hyperbolic shear deformation theory for functionally graded thick rectangular plates on elastic foundation. Geomechanics and Engineering, 12, (1), (2017), pp. 9–34. https://doi.org/10.12989/gae.2017.12.1.009.

F. Z. Zaoui, D. Ouinas, and A. Tounsi. New 2D and quasi-3D shear deformation theories for free vibration of functionally graded plates on elastic foundations. Composites Part B: Engineering, 159, (2019), pp. 231–247. https://doi.org/10.1016/j.compositesb.2018.09.051.

M. Eisenberger, D. Z. Yankelevsky, and M. A. Adin. Vibrations of beams fully or partially supported on elastic foundations. Earthquake Engineering & Structural Dynamics, 13, (5), (1985), pp. 651–660. https://doi.org/10.1002/eqe.4290130507.

T. Yokoyama. Vibration analysis of Timoshenko beam-columns on two-parameter elastic foundations. Computers & Structures, 61, (6), (1996), pp. 995–1007. https://doi.org/10.1016/0045-7949(96)00107-1.

S. Motaghian, M. Mofid, and J. E. Akin. On the free vibration response of rectangular plates, partially supported on elastic foundation. Applied Mathematical Modelling, 36, (9), (2012), pp. 4473–4482. https://doi.org/10.1016/j.apm.2011.11.076.

H. S. Shen. Functionally graded materials: nonlinear analysis of plates and shells. CRC Press, Taylor & Francis Group, Boca Raton, (2009).

R. D. Cook, D. S. Malkus, and M. E. Plesha. Concepts and applications of finite element analysis. JohnWilley & Sons, New York, 3rd edition, (1989).

S. S. Rao. The finite element method in engineering. Elsevier, Amsterdam, 4th edition, (2005).