Phản ứng tạm thời và dao động miễn phí của các tấm composite gia cố bằng CNT đã được nén ban đầu
Tóm tắt
Từ khóa
#Composite gia cố bằng CNT #tải trọng ban đầu #dao động tự do #phản ứng tạm thời phi tuyến #sai lệch hình họcTài liệu tham khảo
<p>[1] H.-S. Shen. Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments. <em>Composite Structures</em>, <strong>91</strong>, (2009), pp. 9–19. https://doi.org/10.1016/j.compstruct.2009.04.026.</p>
<p>[2] P. Zhu, Z. X. Lei, and K. M. Liew. Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory. <em>Composite Structures</em>, <strong>94</strong>, (2012), pp. 1450–1460. https://doi.org/10.1016/j.compstruct.2011.11.010.</p>
<p>[3] Z. X. Lei, K. M. Liew, and J. L. Yu. Free vibration analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method in thermal environment. <em>Composite Structures</em>, <strong>106</strong>, (2013), pp. 128–138. https://doi.org/10.1016/j.compstruct.2013.06.003.</p>
<p>[4] B. A. Selim, L. W. Zhang, and K. M. Liew. Vibration analysis of CNT reinforced functionally graded composite plates in a thermal environment based on Reddy’s higher-order shear deformation theory. <em>Composite Structures</em>, <strong>156</strong>, (2016), pp. 276–290. https://doi.org/10.1016/j.compstruct.2015.10.026.</p>
<p>[5] L. W. Zhang, W. C. Cui, and K. M. Liew. Vibration analysis of functionally graded carbon nanotube reinforced composite thick plates with elastically restrained edges. <em>International Journal of Mechanical Sciences</em>, <strong>103</strong>, (2015), pp. 9–21. https://doi.org/10.1016/j.ijmecsci.2015.08.021.</p>
<p>[6] E. Abdollahzadeh Shahrbabaki and A. Alibeigloo. Three-dimensional free vibration of carbon nanotube-reinforced composite plates with various boundary conditions using Ritz method. <em>Composite Structures</em>, <strong>111</strong>, (2014), pp. 362–370. https://doi.org/10.1016/j.compstruct.2014.01.013.</p>
<p>[7] Y. Kiani. Free vibration of functionally graded carbon nanotube reinforced composite plates integrated with piezoelectric layers. <em>Computers & Mathematics with Applications</em>, <strong>72</strong>, (2016), pp. 2433–2449. https://doi.org/10.1016/j.camwa.2016.09.007.</p>
<p>[8] M. Wang, Z.-M. Li, and P. Qiao. Semi-analytical solutions to buckling and free vibration analysis of carbon nanotube-reinforced composite thin plates. <em>Composite Structures</em>, <strong>144</strong>, (2016), pp. 33–43. https://doi.org/10.1016/j.compstruct.2016.02.025.</p>
<p>[9] N. D. Duc, J. Lee, T. Nguyen-Thoi, and P. T. Thang. Static response and free vibration of functionally graded carbon nanotube-reinforced composite rectangular plates resting on Winkler–Pasternak elastic foundations. <em>Aerospace Science and Technology</em>, <strong>68</strong>, (2017), pp. 391–402. https://doi.org/10.1016/j.ast.2017.05.032.</p>
<p>[10] B. Karami, D. Shahsavari, and M. Janghorban. A comprehensive analytical study on functionally graded carbon nanotube-reinforced composite plates. <em>Aerospace Science and Technology</em>, <strong>82–83</strong>, (2018), pp. 499–512. https://doi.org/10.1016/j.ast.2018.10.001.</p>
<p>[11] M. Bouazza and A. M. Zenkour. Vibration of carbon nanotube-reinforced plates via refined nth-higher-order theory. <em>Archive of Applied Mechanics</em>, <strong>90</strong>, (2020), pp. 1755–1769. https://doi.org/10.1007/s00419-020-01694-3.</p>
<p>[12] K. Mehar, S. K. Panda, A. Dehengia, and V. R. Kar. Vibration analysis of functionally graded carbon nanotube reinforced composite plate in thermal environment. <em>Journal of Sandwich Structures & Materials</em>, <strong>18</strong>, (2015), pp. 151–173. https://doi.org/10.1177/1099636215613324.</p>
<p>[13] P. Shi. Three-dimensional isogeometric analysis of functionally graded carbon nanotube-reinforced composite plates. <em>Archive of Applied Mechanics</em>, <strong>92</strong>, (2022), pp. 3033–3063. https://doi.org/10.1007/s00419-022-02224-z.</p>
<p>[14] Z.-X. Wang and H.-S. Shen. Nonlinear vibration of nanotube-reinforced composite plates in thermal environments. <em>Computational Materials Science</em>, <strong>50</strong>, (2011), pp. 2319–2330. https://doi.org/10.1016/j.commatsci.2011.03.005.</p>
<p>[15] H. Tang and H.-L. Dai. Nonlinear vibration behavior of CNTRC plate with different distribution of CNTs under hygrothermal effects. <em>Aerospace Science and Technology</em>, <strong>115</strong>, (2021). https://doi.org/10.1016/j.ast.2021.106767.</p>
<p>[16] J. R. Cho. Nonlinear free vibration of functionally graded CNT-reinforced composite plates. <em>Composite Structures</em>, <strong>281</strong>, (2022). https://doi.org/10.1016/j.compstruct.2021.115101.</p>
<p>[17] Z.-X. Wang and H.-S. Shen. Nonlinear dynamic response of nanotube-reinforced composite plates resting on elastic foundations in thermal environments. <em>Nonlinear Dynamics</em>, <strong>70</strong>, (2012), pp. 735–754. https://doi.org/10.1007/s11071-012-0491-2.</p>
<p>[18] Z. X. Lei, L. W. Zhang, and K. M. Liew. Elastodynamic analysis of carbon nanotube-reinforced functionally graded plates. <em>International Journal of Mechanical Sciences</em>, <strong>99</strong>, (2015), pp. 208–217. https://doi.org/10.1016/j.ijmecsci.2015.05.014.</p>
<p>[19] A. Frikha, S. Zghal, and F. Dammak. Dynamic analysis of functionally graded carbon nanotubes-reinforced plate and shell structures using a double directors finite shell element. <em>Aerospace Science and Technology</em>, <strong>78</strong>, (2018), pp. 438–451. https://doi.org/10.1016/j.ast.2018.04.048.</p>
<p>[20] P. Phung-Van, M. Abdel-Wahab, K. M. Liew, S. P. A. Bordas, and H. Nguyen-Xuan. Isogeometric analysis of functionally graded carbon nanotube-reinforced composite plates using higher-order shear deformation theory. <em>Composite Structures</em>, <strong>123</strong>, (2015), pp. 137–149. https://doi.org/10.1016/j.compstruct.2014.12.021.</p>
<p>[21] V. N. Van Do, J.-T. Jeon, and C.-H. Lee. Dynamic analysis of carbon nanotube reinforced composite plates by using Bézier extraction based isogeometric finite element combined with higher-order shear deformation theory. <em>Mechanics of Materials</em>, <strong>142</strong>, (2020). https://doi.org/10.1016/j.mechmat.2019.103307.</p>
<p>[22] L. T. Nhu Trang and H. Van Tung. Tangential edge constraint sensitivity of nonlinear stability of CNT-reinforced composite plates under compressive and thermomechanical loadings. <em>Journal of Engineering Mechanics</em>, <strong>144</strong>, (2018). https://doi.org/10.1061/(asce)em.1943- 7889.0001479.</p>
<p>[23] N. D. Anh, N. V. Thinh, and H. V. Tung. Thermoelastic nonlinear vibration and dynamical response of geometrically imperfect carbon nanotube-reinforced composite plates on elastic foundations including tangential edge constraints. <em>Journal of Thermoplastic Composite Materials</em>, <strong>37</strong>, (2023), pp. 1067–1093. https://doi.org/10.1177/08927057231191454.</p>
<p>[24] N. D. Anh, N. Van Thinh, and H. Van Tung. Nonlinear thermomechanical vibration of initially stressed functionally graded plates with porosities. <em>ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik</em>, <strong>104</strong>, (2023). https://doi.org/10.1002/zamm.202300528.</p>
<p>[25] H. V. Tung. Thermal buckling and postbuckling behavior of functionally graded carbon-nanotube-reinforced composite plates resting on elastic foundations with tangential-edge restraints. <em>Journal of Thermal Stresses</em>, <strong>40</strong>, (2016), pp. 641–663. https://doi.org/10.1080/01495739.2016.1254577.</p>