Fredholm eigenvalues and quasiconformal mapping
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ahlfors, Lars V., Remarks on the Neumann-Poincaré integral equation.Pacific J. Math., 2 (1952), 271–280.
—, Conformality with respect to Riemannian metrics.Ann. Acad. Sci. Fenn., Ser. A, I, 206 (1955), 1–22.
Ahlfors, Lars V., &Bers, Lipman, Riemann's Mapping theorem for variable metrics.Ann. of Math., 72 (1960), 385–404.
Bergman, S. &Schiffer, M., Kernel functions and conformal mapping.Compositio Math., 8 (1951), 205–249.
Beurling, A., &Ahlfors, L., The boundary correspondence under quasiconformal mappings.Acta Math., 96 (1956), 125–142.
Pfluger, A., Über die Äquivalenz der geometrischen und der analytischen Definition quasikonformer Abbildungen.Comment. Math. Helv., 33 (1959), 23–33.
Royden, H. L., A modification of the Neumann-Poincaré method for multiply connected regions.Pacific J. Math., 2 (1952), 385–394.
Schiffer, M. & Springer G., Fredholm eigenvalues and conformal mapping of multiply connected domains. To appear inJ. Analyse Math.
Tienari, M., Fortsetzung einer quasikonformen Abbildung über einen Jordanbogen.Ann. Acad. Sci. Fenn., Ser. A, I, 321 (1962), 31 pp.
Warschawski, S. E., On the solution of the Lichtenstein-Gershgorin integral equation in conformal mapping.Experiments in the Computation of Conformal Maps, National Bureau of Standards Applied Math. Series, 42 (1955), 7–30.
— On the effective determination of conformal maps.Contributions to the Theory of Riemann Surfaces, Annals of Math. Studies, 30, Princeton University Press, Princeton, N.J., (1953), 177–188.