Frame Phase-Retrievability and Exact Phase-Retrievable Frames

Springer Science and Business Media LLC - Tập 25 - Trang 3154-3173 - 2019
Deguang Han1, Ted Juste1, Youfa Li2, Wenchang Sun3
1Department of Mathematics, University of Central Florida, Orlando, USA
2College of Mathematics and Information Science, Guangxi University, Naning, China
3School of Mathematical Sciences and LPMC, Nankai University, Tianjin, China

Tóm tắt

A phase-retrievable frame $$\{f_{i}\}_{i}^{N}$$ for an n-dimensional Hilbert space is exact if it fails to be phase-retrievable when removing any element from the frame sequence. Unlike exact frames, exact phase-retrievable frames could have different lengths. We shall prove that for the real Hilbert space case, exact phase-retrievable frame of length N exists for every $$2n-1\le N\le n(n+1)/2$$. For arbitrary frames we introduce the concept of redundancy with respect to its phase-retrievability and the concept of frames with exact PR-redundancy. We investigate the phase-retrievability by studying its maximal phase-retrievable subspaces with respect to a given frame which is not necessarily phase-retrievable. These maximal PR-subspaces could have different dimensions. We are able to identify the one with the largest dimension, which can be considered as a generalization of the characterization for phase-retrievable frames. In the basis case, we prove that if M is a k-dimensional PR-subspace, then $$|supp(x)| \ge k$$ for every nonzero vector $$x\in M$$. Moreover, if $$1\le k< [(n+1)/2]$$, then a k-dimensional PR-subspace is maximal if and only if there exists a vector $$x\in M$$ such that $$|supp(x) | = k$$.

Tài liệu tham khảo

Balan, R.: Stability of phase retrievable frames. Proc. SPIE, Wavelets and Sparsity XV, 88580H (2013) Balan, R., Casazza, P., Edidin, D.: On signal reconstruction without phase. Appl. Comput. Harmon. Anal. 20, 345–356 (2006) Balan, R., Casazza, P.G., Edidin, D.: On signal reconstruction from the absolute value of the frame coefficients. Proc. SPIE 5914(1–8), 591415 (2005) Balan, R., Casazza, P.G., Edidin, D.: Equivalence of reconstruction from the absolute value of the frame coefficients to a sparse representation problem. IEEE Signal Process. Lett 14, 341–343 (2007) Balan, B., Bodmann, B.G., Casazza, P.G., Edidin, D.: Painless reconstruction from magnitudes of frame vectors. J. Fourier Anal. Appl. 15, 488–501 (2009) Balan, R., Bodmann, B.G., Casazza, P.G., Edidin, D.: Fast Algorithms for Signal Reconstruction without Phase. Proceedings of SPIE-Wavelets XII, San Diego, vol.6701, 670111920–670111932 (2007) Balan, R., Zou, D.: On Lipschitz analysis and Lipschitz synthesis for the phase retrieval problem. Linear Algebra Appl. 496, 152–181 (2016) Balan, R., Wang, Y.: Invertibility and robustness of phaseless reconstruction. Appl. Comput. Harmon. Aanl. 38, 469–488 (2015) Bandeira, A.S., Cahill, J., Mixon, D.G., Nelson, A.A.: Saving phase: injectivity and stability for phase retrieval. Appl. Comput. Harmon. Anal. 37, 106–125 (2014) Bandeira, A.S., Chen, Y., Mixon, D.G.: Phase retrieval from power spectra of masked signals. Inf. Inference 3, 83–102 (2014) Bendory, T., Eldar, Y.C.: A least squares approach for stable phase retrieval from short-time Fourier transform magnitude. (2015). preprint, arXiv:1510.00920 Bodmann, B.G., Hammen, N.: Stable phase retrieval with low-redundancy frames. Adv. Comput. Math. 41, 317–331 (2015) Bodmann, B.G., Casazza, P.G., Edidin, D., Balan, R.: Frames for Linear Reconstruction without Phase. CISS Meeting, Princeton, NJ (2008) Bojarovska, I., Flinth, A.: Phase retrieval from Gabor measurements. J. Fourier Anal. Appl. 22, 542–567 (2016) Candès, E.J., Eldar, Y.C., Strohmer, T., Voroninski, V.: Phase retrieval via matrix completion. SIAM J. Imaging Sci. 6, 199–225 (2013) Candès, E.J., Strohmer, T., Voroninski, V.: PhaseLift: Exact and stable signal recovery from magnitude measurements via convex programming. Commun. Pure Appl. Math. 66, 1241–1274 (2013) Candès, E.J., Li, X.: Solving quadratic equations via PhaseLift when there are about as many equations as unknowns. Found. Comput. Math. 14, 1017–1026 (2014) Eldar, Y.C., Hammen, N., Mixon, D.: Recent Advances in Phase Retrieval. In: IEEE Signal Processing Magazine, pp. 158–162 (2016) Eldar, Y.C., Sidorenko, P., Mixon, D.G., Barel, S., Cohen, O.: Sparse phase retrieval from short-time Fourier measurements. IEEE Signal Process. Lett. 22, 638–642 (2015) Fickus, M., Mixon, D.G., Nelson, A.A., Wang, Y.: Phase retrieval from very few measurements. Linear Algebra Appl. 449, 475–499 (2014) Jaganathan, K., Eldar, Y.C., Hassibi, B.: Phase retrieval: an overview of developments, Chapter 13. In: Stern, A. (ed.) Optical Compressive Imaging. CRC Press, Boca Raton (2016) Li, L., Cheng, C., Han, D., Sun, Q., Shi, G.: Phase retrieval from multiple-window Short-Time Fourier measurements. IEEE Signal Process. Lett. 24, 372–376 (2017) Nawab, S.H., Quatieri, T.F., Lim, J.S.: Signal reconstruction from short-time Fourier transform magnitude. IEEE Trans. Acoust. Speech Signal Process. 31, 986–998 (1983) Wang, Y., Xu, Z.: Phase retrieval for sparse signals. Appl. Comput. Harmon. Anal. 37, 531–544 (2014)