Fractal generation via generalized Fibonacci–Mann iteration with s-convexity

Swati Antal1, Nihal Özgür2, Anita Tomar3, Krzysztof Gdawiec4
1Department of Mathematics, Army Cadet College Wing, Indian Military Academy, Dehradun, India
2Department of Mathematics, İzmir Democracy University, Karabağlar, İzmir, Turkey
3Department of Mathematics, Pt.L.M.S. Campus, Sridev Suman Uttarakhand University, Rishikesh, India
4Institute of Computer Science, University of Silesia in Katowice, Sosnowiec, Poland

Tóm tắt

Recently, the generalized Fibonacci–Mann iteration scheme has been defined and used to develop an escape criterion to study mutants of the classical fractals for a function $$\sin \left( z^{n}\right) +az+c$$ , $$a,c\in \mathbb {C}$$ , $$n\ge 2$$ , and z is a complex variable. In the current work, we use generalized Fibonacci–Mann iteration extended further via the notion of s-convex combination in the exploration of new mutants of celebrated Mandelbrot and Julia sets. Further, we provide a few graphical and numerical examples obtained by the use of the derived criteria.

Tài liệu tham khảo

Alfuraidan, M. R. and Khamsi, M. A. Fibonacci-Mann iteration for monotone asymptotically nonexpansive mappings, Bull. Aust. Math. Soc., 96 (2) (2017), 307–316.

Antal, S., Tomar, A., Prajapati, D. J., Sajid, M., Fractals as Julia sets of complex sine function via fixed point iterations, Fractal Fract. 2021, 5, 272. https://doi.org/10.3390/fractalfract5040272

Antal, S., Tomar, A., Prajapati, D.J., Sajid, M., Variants of Julia and Mandelbrot sets as fractals via Jungck-Ishikawa fixed point iteration system with\( s \)-convexity, AIMS Mathematics, 7 (6) (2022), 10939–10957. https://doi.org/10.3934/math.2022611

Julia, G., Mémoire sur l’itération des fonctions rationnelles, J. Math. Pures Appl., 8 (1918), 47–745.

Barnsley, M., Fractals everywhere, 2nd ed.; Academic Press: San Diego, CA, USA, 1993.

Barrallo, J. and Jones, D. M., Coloring algorithms for dynamical systems in the complex plane, in visual mathematics, 1 (4), MISASA, Belgrade, Serbia, 1999.

Kang, S. M., Nazeer, W., Tanveer, M. and Shahid, A. A., New fixed point results for fractals generation in Jungck-Noor orbit with\( s \)-convexity, J. Funct. Spaces, 2015, Artical ID: 963016, 1–7.

Kwun, Y. C., Shahid, A. A., Nazeer, W., Abbas, M. and Kang, S. M., Fractal generation via\( CR \)-iteration scheme with\( s \)-convexity, IEEE Access 7 (2019), 69986-69997.

Özgür, N., Antal, S., Tomar, A., Julia and Mandelbrot sets of transcendental function via Fibonacci-Mann iteration, J. Funct. Spaces, (2022), Article ID 2592573, 13 pages. https://doi.org/10.1155/2022/2592573

Picard, E., Memoire sur la theorie des equations aux derivees partielles et la methode des approximations successives, J. Math. Pures et Appl., 6 (1890), 145210.

Pinheiro, M. R., \(s\)-convexity: foundations for analysis, Differ. Geom. Dyn. Syst. 10 (2008), 257–262.

Tomar, A., Prajapati, D. J., Antal, S., Rawat, S., Variants of Mandelbrot and Julia fractals for higher-order complex polynomials, Math. Meth. Appl. Sci. (2022), 1-13. https://doi.org/10.1002/mma.8262

Tomar, A., Antal, S., Özgür, N. and Kumar, V., A generalized version of Fibonacci-Mann Iteration scheme in fractal generating process, preprint.