Fractal generation via generalized Fibonacci–Mann iteration with s-convexity
Tóm tắt
Tài liệu tham khảo
Alfuraidan, M. R. and Khamsi, M. A. Fibonacci-Mann iteration for monotone asymptotically nonexpansive mappings, Bull. Aust. Math. Soc., 96 (2) (2017), 307–316.
Antal, S., Tomar, A., Prajapati, D. J., Sajid, M., Fractals as Julia sets of complex sine function via fixed point iterations, Fractal Fract. 2021, 5, 272. https://doi.org/10.3390/fractalfract5040272
Antal, S., Tomar, A., Prajapati, D.J., Sajid, M., Variants of Julia and Mandelbrot sets as fractals via Jungck-Ishikawa fixed point iteration system with\( s \)-convexity, AIMS Mathematics, 7 (6) (2022), 10939–10957. https://doi.org/10.3934/math.2022611
Julia, G., Mémoire sur l’itération des fonctions rationnelles, J. Math. Pures Appl., 8 (1918), 47–745.
Barnsley, M., Fractals everywhere, 2nd ed.; Academic Press: San Diego, CA, USA, 1993.
Barrallo, J. and Jones, D. M., Coloring algorithms for dynamical systems in the complex plane, in visual mathematics, 1 (4), MISASA, Belgrade, Serbia, 1999.
Kang, S. M., Nazeer, W., Tanveer, M. and Shahid, A. A., New fixed point results for fractals generation in Jungck-Noor orbit with\( s \)-convexity, J. Funct. Spaces, 2015, Artical ID: 963016, 1–7.
Kwun, Y. C., Shahid, A. A., Nazeer, W., Abbas, M. and Kang, S. M., Fractal generation via\( CR \)-iteration scheme with\( s \)-convexity, IEEE Access 7 (2019), 69986-69997.
Özgür, N., Antal, S., Tomar, A., Julia and Mandelbrot sets of transcendental function via Fibonacci-Mann iteration, J. Funct. Spaces, (2022), Article ID 2592573, 13 pages. https://doi.org/10.1155/2022/2592573
Picard, E., Memoire sur la theorie des equations aux derivees partielles et la methode des approximations successives, J. Math. Pures et Appl., 6 (1890), 145210.
Pinheiro, M. R., \(s\)-convexity: foundations for analysis, Differ. Geom. Dyn. Syst. 10 (2008), 257–262.
Tomar, A., Prajapati, D. J., Antal, S., Rawat, S., Variants of Mandelbrot and Julia fractals for higher-order complex polynomials, Math. Meth. Appl. Sci. (2022), 1-13. https://doi.org/10.1002/mma.8262
Tomar, A., Antal, S., Özgür, N. and Kumar, V., A generalized version of Fibonacci-Mann Iteration scheme in fractal generating process, preprint.