Four thiol-oxidoreductases involved in the formation of disulphide bonds in the Streptomyces lividans TK21 secretory proteins
Tóm tắt
Bacterial secretory proteins often require the formation of disulphide bonds outside the cell to acquire an active conformation. Thiol-disulphide oxidoreductases are enzymes that catalyse the formation of disulphide bonds. The bacterium Streptomyces lividans is a well-known host for the efficient secretion of overproduced homologous and heterologous secretory proteins of industrial application. Therefore, the correct conformation of these extracellular proteins is of great importance when engineering that overproduction. We have identified four acting thiol-disulphide oxidoreductases (TDORs) in S. lividans TK21, mutants in all TDOR candidates affect the secretion and activity of the Sec-dependent alpha-amylase, which contains several disulphide bonds, but the effect was more drastic in the case of the Sli-DsbA deficient strain. Thus, the four TDOR are required to obtain active alpha-amylase. Additionally, only mutations in Sli-DsbA and Sli-DsbB affect the secretion and activity of the Tat-dependent agarase, which does not form a disulphide bond, when it is overproduced. This suggests a possible role of the oxidised Sli-DsbA as a chaperone in the production of active agarase. Enzymes involved in the production of the extracellular mature active proteins are not fully characterised yet in Streptomyces lividans. Our results suggest that the role of thiol-disulphide oxidoreductases must be considered when engineering Streptomyces strains for the overproduction of homologous or heterologous secretory proteins of industrial application, irrespective of their secretion route, in order to obtain active, correctly folded proteins.
Tài liệu tham khảo
Hatabet F, Boyd D, Beckwith J. Disulfide bond formation in prokaryotes: history, diversity and design. Biochim Biophsy Acta. 2014;1844:1402–14.
Bader M, Muse W, Ballou D, Gassner C, Bardwell JCA. Oxidative protein folding is driven by the electron transport system. Cell. 1999;98:217–27.
Bader M, Xie T, Yu CA, Bardwell JCA. Disulfide bonds are generated by quinone reduction. J Biol Chem. 2000;275:26082–8.
Rietsch A, Belin D, Martin N, Beckwith J. An in vivo pathway for disulfide bond isomerization in Escherichia coli. Proc Natl Acad Sci USA. 1996;93:13048–53.
Rietsch A, Bessette P, Georgiou G, Beckwith J. Reduction of periplasmic disulfide bond isomerase, DsbC, occurs by passage of electrons from cytoplasmic thioredoxin. J Bacteriol. 1997;179:6602–8.
Denoncin K, Collet JF. Disulfide bond formation in the bacterial periplasm. Major achievements and challenges ahead. Antioxid Redox Signal. 2013;19:63–71. https://doi.org/10.1089/ars.2012.4864.
Zheng WD, Quan H, Song JL, Yang SL, Wang CC. Does DsbA have Chaperone-like activity? Arch Biochem Biophys. 1997;337:326–31.
Chen J, Song JL, Zhang S, Wang Y, Cui DF, Wang CC. Chaperone activity of DsbC. J Biol Chem. 1999;274:19601–5.
Shao F, Bader MW, Jakob U, Bardwell JC. DsbG, a protein disulfide isomerase with chaperone activity. J Biol Chem. 2000;275:13349–52.
Kouwen TR, van Dijl JM. Interchangeable modules in bacterial thiol-disulfide exchange pathways. Trends Microbiol. 2009;17:6–12.
Anné J, Maldonado B, Van Impe J, Van Mellaert L, Bernaerts K. Recombinant protein production and streptomycetes. J Biotechnol. 2012;158:159–67.
Escutia MR, Val G, Palacín A, Geukens N, Anné J, Mellado RP. Compensatory effect of the minor Streptomyces lividans type I signal peptidases on the SipY major signal peptidase deficiency as determined by extracellular proteome analysis. Proteomics. 2006;6:4137–46.
Rückert C, Albersmeier A, Busche T, Jaenicke S, Winkler A, Friðjónsson ÓH, et al. 2015 Complete genome sequence of Streptomyces lividans TK24. J Biotechnol. 2015;199:21–2.
Almagro Armenteros JJ, Tsirigos KD, Sønderby CK, Petersen TN, Winther O, Brunak S, et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol. 2019;37:420–3. https://doi.org/10.1038/s41587-019-0036-z.
Juncker AS, Willenbrock H, Von Heijne G, Brunak S, Nielsen H, Krogh A. Prediction of lipoprotein signal peptides in gram-negative bacteria. Protein Sci. 2003;12:1652–62.
Rahman O, Cummings SP, Harrington DJ, Sutcliffe IC. Methods for the bioinformatic identification of bacterial lipoproteins encoded in the genomes of gram-positive bacteria. World J Microbiol Biotechnol. 2008;24:2377. https://doi.org/10.1007/s11274-008-9795-2.
Kadokura H, Beckwith J. Mechanisms of oxidative protein folding in the bacterial cell envelope. Antioxid Redox Signal. 2010;13:1231–46. https://doi.org/10.1089/ars.2010.3187.
Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001;305:567–80.
Jander G, Martin NL, Beckwith J. Two cysteines in each periplasmic domain of the membrane protein DsbB are required for its function in protein disulfide bond formation. EMBO J. 1994;13:5121–7.
Katzen F, Deshmukh M, Daldal F, Beckwith J. Evolutionary domain fusion expanded the substrate specificity of the trans-membrane electron transporter DsbD. EMBO J. 2002;21:3960–9.
Gullón S, Marín S, Mellado RP. Overproduction of a model Sec-and Tat-dependent secretory protein elicits different cellular responses in Streptomyces lividans. PLoS ONE. 2015;10(7):e0133645. https://doi.org/10.1371/journal.pone.0133645.
Ferrè F, Clote P. DIANNA 1.1.: an extension of the DIANNA web server for ternary cysteine classification. Nucleic Acids Res. 2006;34(Suppl 2):W182–5.
Gullón S, Vicente RL, Mellado RP. A novel two-component system involved in secretion stress response in Streptomyces lividans. PLoS ONE. 2012;7(11):e48987. https://doi.org/10.1371/journal.pone.0048987.
Vicente RL, Gullón S, Marín S, Mellado RP. The three Streptomyces lividans HtrA-like proteases involved in the secretion stress response act in a cooperative manner. PLoS ONE. 2016;11(12):e0168112. https://doi.org/10.1371/journal.pone.0168112.
Widdick DA, Dilks K, Chandra G, Bottrill A, Naldrett M, Pohlschröder M, Palmer T. The twin-arginine translocation pathway is a major route of protein export in Streptomyces coelicolor. PNAS. 2006;103:17927–32.
Ramos KRM, Valdehuesa KNG, Nisola GM, Lee WK, Chung WJ. Identification and characterization of a thermostable endolytic β-agarase Aga2 from a newly isolated marine agarolytic bacteria Cellulophaga omnivescoria W5C. N Biotechnol. 2018;40(PtB):261–7.
Palacín A, Parro V, Geukens N, Anné J, Mellado RP. SipY is the Streptomyces lividans type I signal peptidase exerting a major effect on protein secretion. J Bacteriol. 2002;184:4875–80.
Gullón S, Arranz EIG, Mellado RP. Transcriptional characterisation of the negative effect exerted by a deficiency in type II signal peptidase on extracellular protein secretion in Streptomyces lividans. Appl Microbiol Biotechnol. 2013;97:10069–80. https://doi.org/10.1007/s00253-013-5219-9.
Robinson C, Bolhuis A. Tat-dependent protein targeting in prokaryotes and chloroplasts. Biochim Biophys Acta. 2004;1694:135–47.
Haldar S, Eckels EC, Echelman DJ, Rivas-Pardo JA, Fernandez JM. DsbA is a switchable mechanical chaperone. BioRxiv. 2018. https://doi.org/10.1101/310169.
Conway ME, Lee C. The redox swith that regulates molecular chaperones. Biomol Concepts. 2015;6:269–84. https://doi.org/10.1515/bmc-2015-0015.
Berkemen M. Production of disulfide-bonded proteins in Escherichia coli. Protein Expr Purif. 2012;82:240–51. https://doi.org/10.1016/j.pep.2011.10.009.
Goemans C, Denoncin K, Collet JF. Folding mechanisms of periplasmic proteins. Biochim Biophys Acta. 2014;1843:1517–28. https://doi.org/10.1016/j.bbamcr.2013.10.014.
Ritz D, Beckwith J. Roles of thiol-redox pathways in bacteria. Annu Rev Microbiol. 2001;55:21–48.
Hopwood DA, Bibb MJ, Chater KF, Kieser T, Bruton CJ, Kieser HM, et al. Genetic manipulation of Streptomyces. Norwich: John Innes Foundation. A laboratory manual; 1985.
Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA. Practical Streptomyces genetics. Norwich: John Innes Foundation; 2000.
Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673–80.
Bierman M, Logan R, O’Brien K, Seno ET, Rao RN, Schoner BE. Plasmid cloning vector for conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene. 1992;116:43–9.
Nybo SE, Shepherd MD, Bosserman MA, Rohr J. Genetic manipulation of Streptomyces species. Curr Protoc Microbiol. 2010. https://doi.org/10.1002/9780471729259.mc10e03s19.
Flett F, Mersinias V, Smith CP. High efficiency intergeneric conjugal transfer of plasmid DNA from Escherichia coli to methyl DNA-restricting streptomycetes. FEMS Microbiol Lett. 1997;155:223–9.
Palomino C, Mellado RP. Influence of a Streptomyces lividans SecG functional analogue on protein secretion. Int Microbiol. 2008;11:25–31.
Parro V, Mellado RP. Effect of glucose on agarase overproduction by Streptomyces. Gene. 1994;145:49–55.
Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–5.
Timmons TM, Dunbar BS. Protein blotting and immunodetection. Methods Enzymol. 1990;182:679–88.
Ruano-Gallego D, Fraile S, Gutierrez C, Fernández LA. Screening and purification of nanobodies from E. coli culture supernatants using the hemolysin secretion system. Microb Cell Fact. 2019;18:47. https://doi.org/10.1186/s12934-019-1094-0.