Forming limit prediction of advanced high-strength steels (AHSS) using an enhanced ductile damage model
Tóm tắt
Từ khóa
#ductile fracture #forming limit diagram #AHSS steel #ductile damage modelTài liệu tham khảo
<p>[1] F. M. Al-Abbasi and J. A. Nemes. Micromechanical modeling of dual phase steels. <em>International Journal of Mechanical Sciences</em>, <strong>45</strong>, (2003), pp. 1449–1465. <a href="https://doi.org/10.1016/j.ijmecsci.2003.10.007">https://doi.org/10.1016/j.ijmecsci.2003.10.007</a>.</p>
<p>[2] A. L. Gurson. Continuum theory of ductile rupture by void nucleation and growth: Part I—yield criteria and flow rules for porous ductile media. <em>Journal of Engineering Materials and Technology</em>, <strong>99</strong>, (1977), pp. 2–15. <a href="https://doi.org/10.1115/1.3443401">https://doi.org/10.1115/1.3443401</a>.</p>
<p>[3] L. Xue. <em>Ductile fracture modeling: theory, experimental investigation and numerical verification</em>. PhD thesis, Massachusetts Institute of Technology, (2007).</p>
<p>[4] L. Xue and T. Wierzbicki. Ductile fracture initiation and propagation modeling using damage plasticity theory. <em>Engineering Fracture Mechanics</em>, <strong>75</strong>, (2008), pp. 3276–3293. <a href="https://doi.org/10.1016/j.engfracmech.2007.08.012">https://doi.org/10.1016/j.engfracmech.2007.08.012</a>.</p>
<p>[5] N. Pathak, J. Adrien, C. Butcher, E. Maire, and M. Worswick. Experimental stress state-dependent void nucleation behavior for advanced high strength steels. <em>International Journal of Mechanical Sciences</em>, <strong>179</strong>, (2020). <a href="https://doi.org/10.1016/j.ijmecsci.2020.105661">https://doi.org/10.1016/j.ijmecsci.2020.105661</a>.</p>
<p>[6] Z. Li, F. Shen, Y. Liu, C. Hartmann, R. Norz, S. Müntermann, W. Volk, J. Min, and J. Lian. Anisotropic fracture behavior of the 3rd generation advanced high-strength – Quenching and Partitioning steels: Experiments and simulation. <em>Journal of Materials Research and Technology</em>, <strong>30</strong>, (2024), pp. 9395–9414. <a href="https://doi.org/10.2139/ssrn.4760467">https://doi.org/10.2139/ssrn.4760467</a>.</p>
<p>[7] N. Park, H. Huh, S. J. Lim, Y. Lou, Y. S. Kang, and M. H. Seo. Fracture-based forming limit criteria for anisotropic materials in sheet metal forming. <em>International Journal of Plasticity</em>, <strong>96</strong>, (2017), pp. 1–35. <a href="https://doi.org/10.1016/j.ijplas.2016.04.014">https://doi.org/10.1016/j.ijplas.2016.04.014</a>.</p>
<p>[8] C. Nikhare, P. D. Hodgson, and M. Weiss. Necking and fracture of advanced high strength steels. <em>Materials Science and Engineering: A</em>, <strong>528</strong>, (2011), pp. 3010–3013. <a href="https://doi.org/10.1016/j.msea.2010.12.098">https://doi.org/10.1016/j.msea.2010.12.098</a>.</p>
<p>[9] S. Zhang, W. Ding, K. Li, and S. Song. Prediction of ductile fracture for DP590 high-strength steel with a new semi-coupled ductile fracture criterion. <em>Journal of the Brazilian Society of Mechanical Sciences and Engineering</em>, <strong>44</strong>, (2021). <a href="https://doi.org/10.1007/s40430-021-03275-z">https://doi.org/10.1007/s40430-021-03275-z</a>.</p>
<p>[10] I. U. Aydiner, B. Tatli, and T. Yalçinkaya. Investigation of failure mechanisms in dual-phase steels through cohesive zone modeling and crystal plasticity frameworks. <em>International Journal of Plasticity</em>, <strong>174</strong>, (2024). <a href="https://doi.org/10.1016/j.ijplas.2024.103898">https://doi.org/10.1016/j.ijplas.2024.103898</a>.</p>
<p>[11] F. A. McClintock, S. M. Kaplan, and C. A. Berg. Ductile fracture by hole growth in shear bands. <em>International Journal of Fracture</em>, <strong>2</strong>, (1966), pp. 614–627. <a href="https://doi.org/10.1007/bf00184558">https://doi.org/10.1007/bf00184558</a>.</p>
<p>[12] N. L. Dung. Three-dimensional void growth in plastic materials. <em>Mechanics Research Communications</em>, <strong>19</strong>, (1992), pp. 227–235. <a href="https://doi.org/10.1016/0093-6413(92)90070-q">https://doi.org/10.1016/0093-6413(92)90070-q</a>.</p>
<p>[13] L. Xue. Constitutive modeling of void shearing effect in ductile fracture of porous materials. <em>Engineering Fracture Mechanics</em>, <strong>75</strong>, (2008), pp. 3343–3366. <a href="https://doi.org/10.1016/j.engfracmech.2007.07.022">https://doi.org/10.1016/j.engfracmech.2007.07.022</a>.</p>
<p>[14] M. Ortiz and J. C. Simo. An analysis of a new class of integration algorithms for elastoplastic constitutive relations. <em>International Journal for Numerical Methods in Engineering</em>, <strong>23</strong>, (1986), pp. 353–366. <a href="https://doi.org/10.1002/nme.1620230303">https://doi.org/10.1002/nme.1620230303</a>.</p>
<p>[15] K. Pack, T. Tancogne-Dejean, M. B. Gorji, and D. Mohr. Hosford-Coulomb ductile failure model for shell elements: Experimental identification and validation for DP980 steel and aluminum 6016-T4. <em>International Journal of Solids and Structures</em>, <strong>151</strong>, (2018), pp. 214–232. <a href="https://doi.org/10.1016/j.ijsolstr.2018.08.006">https://doi.org/10.1016/j.ijsolstr.2018.08.006</a>.</p>
<p>[16] H. H. Nguyen. Ductile damage prediction of advanced high-strength sheet steel using an enhanced crack criterion. In <em>Proceedings of the International Conference on Sustainable Energy Technologies</em>, Springer Nature Singapore, (2024), pp. 405–413. <a href="https://doi.org/10.1007/978-981-97-1868-9_41">https://doi.org/10.1007/978-</a> <a href="https://doi.org/10.1007/978-981-97-1868-9_41">981-97-1868-9 41</a>.</p>
