Formation of amyloid-like aggregates through the attachment of protein molecules to a Congo red scaffolding framework ordered under the influence of an electric field

Central European Journal of Chemistry - Tập 8 - Trang 41-50 - 2010
Barbara Stopa1, Barbara Piekarska1, Leszek Konieczny1, Marcin Król2, Janina Rybarska1, Anna Jagusiak1, Paweł Spólnik1, Irena Roterman2, Barbara Urbanowicz3, Piotr Piwowar4, Krzysztof Lewiński5
1Chair of Medical Biochemistry, Jagiellonian University Medical College, Kraków, Poland
2Department of Bioinformatics and Telemedicine, Jagiellonian University Medical College, Kraków, Poland
3Electron Microscopy Laboratory, University Children’s Hospital, Kraków, Poland
4Department of Measurements and Instrumentation, AGH-University of Science and Technology, Kraków, Poland
5Faculty of Chemistry, Jagiellonian University, Kraków, Poland

Tóm tắt

This study describes a technique which makes it possible to introduce the amyloid-like order to protein aggregates by using the scaffolding framework built from supramolecular, fibrillar Congo red structures arranged in an electric field. The electric field was used not only to obtain a uniform orientation of the charged dye fibrils, but also to make the fibrils long, compact and rigid due to the delocalization of pi electrons, which favors ring stacking and, as a consequence, results in an increased tendency to self-assemble. The protein molecules (immunoglobulin L chain lambda, ferritin) attached to this easily adsorbing dye framework assume its ordered structure. The complex precipitating as plate-like fragments shows birefringence in polarized light. The parallel organization of fibrils can be observed with an electron microscope. The dye framework may be removed via reduction with sodium dithionite, leaving the aggregated protein molecules in the ordered state, as confirmed by X-ray diffraction studies.

Tài liệu tham khảo

R. Kisilevsky, J. Struct. Biol. 130, 99 (2000) A.L. Fink, Fold. Des. 3, R9 (1998) L. Nielsen, R. Khurana, A. Coats, S. Frokjaer, J. Brange, S. Vyas, V.N. Uversky, A.L. Fink, Biochemistry 40, 6036 (2001) R. Wetzel, Structure 10, 1031 (2002) A. Quintas, D.C. Vaz, I. Cardoso, M.J.M. Saraiva, R.M.M. Brito, J. Biol. Chem. 276, 27207 (2001) A. Lorenzo, B.A. Yankner, Proc. Natl. Acad. Sci. U.S.A. 91, 12243 (1994) C. Wu, Z. Wang, H. Lei, W. Zhang, Y. Duan, J. Am. Chem. Soc. 129, 1225 (2007) R. Tycko, Curr. Opin. Struct. Biol. 14, 96 (2004) M.R. Nilsson, Methods 34, 151 (2004) P.K. Nandi, E. Leclerc, J-C. Nicole, M. Takahashi, J. Mol. Biol. 322, 153 (2002) B. Ma, R. Nussinov, Curr. Opin. Chem. Biol. 10, 445 (2006) F. Chiti, P. Webster, N. Taddei, A. Clark, M. Stefani, G. Ramponi, C.M. Dobson, Proc. Natl. Acad. Sci. U.S.A. 96, 3590 (1999) E. Gazit, Drugs Fut. 29, 1 (2004) P. Spólnik et al., Chem. Biol. Drug. Des. 70, 491 (2007) M.J. Rashkin, M.L Waters, J. Am. Chem. Soc. 124, 1860 (2002) P. Mignon, S. Loverix, J. Steyaert, P. Geerlings, Nucleic Acids Res. 33, 1779 (2005) C.A. Hunter, K.R. Lawson, J. Perkins, C.J. Urch, J. Chem. Soc. Perkin Trans. 2, 651 (2001) M.O. Sinnokrot, C.D. Sherrill, J. Am. Chem. Soc. 126, 7690 (2004) M.O. Sinnokrot, C.D. Sherrill, J. Phys. Chem. A. 107, 8377 (2003) P. Mignon, S. Loverix, P. Geerlings, Chem. Phys. Lett. 401, 40 (2005) L. Venkataraman, J.E. Klare, C. Nuckolls, M.S. Hybertsen, M.L. Steigerwald, Nature 442, 904 (2006) T. Dadosh et al., Nature 436, 677 (2005) A. Troisi, M.A. Ratner, J. Am. Chem. Soc. 124, 14528 (2002) S. Yasuda, T. Nakamura, M. Matsumoto, H. Shigekawa, J. Am. Chem. Soc. 125, 16430 (2003) Y. Lansac, M.A. Glaser, N.A. Clark, O.D. Lavrentovich, Nature 398, 54 (1999) I. McCulloch et al., Jpn. J. Appl. Phys. 47, 488 (2008) K.S. Krishnamurthy, P. Kumar, Phys. Rev. E Stat. Nonlin. Soft Matter Phys., DOI: 10.1103/PhysRevE.76.051705 I. Roterman, J. Rybarska, L. Konieczny, M. Skowronek, B. Stopa, B. Piekarska, Comput. Chem. 22, 61 (1998) B. Piekarska et al., Biopolymers 59, 446 (2001) M. Król, I. Roterman, B. Piekarska, L. Konieczny, J. Rybarska, B. Stopa, Biopolymers 69, 189 (2003) H.M. Berman, T.N. Bhat, P.E. Bourne, Z. Feng, G. Gilliland, H. Weissig, J. Westbrook, Nat. Struct. Biol. 7 Suppl. S, 957 (2000) M. Mezei, J. Comput. Chem. 18, 812 (1997) J.C. Phillips et al., J. Comput. Chem. 26, 1781 (2005) A.D. MacKerell Jr. et al., J. Phys. Chem. B 102, 3586 (1998) M. Król, T. Borowski, I. Roterman, B. Piekarska, B. Stopa, J. Rybarska, L. Konieczny, J. Comput. Aided Mol. Des. 18, 41 (2004) B. Brooks, R. Bruccoleri, B. Olafson, D. States, S. Swaminathan, M. Karplus, J. Comput. Chem. 4, 187 (1983) M. Skowronek et al., Biopolymers 46, 267 (1998) X. Jiang, C.S. Smith, H.M. Petrassi, P. Hammarström, J.T. White, J.C. Sacchettini, J.W. Kelly, Biochemistry 40, 11442 (2001) J. Wall, M. Schell, C. Murphy, R. Hrncic, F.J. Stevens, A. Solomon, Biochemistry 38, 14101 (1999) B. Piekarska, J. Rybarska, B. Stopa, G. Zemanek, M. Król, I. Roterman, L. Konieczny, Acta Biochim. Pol. 46, 841 (1999) B. Stopa et al., Int. J. Biol. Macromol. 40, 1 (2006) M. Saiki, S. Honda, K. Kawasaki, D. Zhou, A. Kaito, T. Konakahara, H. Morii, J. Mol. Biol. 348, 983 (2005) E.D. Eanes, G.G. Glenner, J. Histochem. Cytochem. 16, 673 (1968) L.C. Serpell, P.E. Fraser, M. Sunde, In: R. Wetzel (Ed.), Methods in Enzymology (Academic Press, San Diego, 1999) Vol. 309, 526 P.T. Lansbury Jr., Biochemistry 31, 6865 (1992) S.C. Meredith, Ann. N.Y. Acad. Sci. 1066, 181 (2005) J.L. Jiménez, J.I. Guijarro, E. Orlova, J. Zurdo, C.M. Dobson, M. Sunde, H.R. Saibil, EMBO J. 18, 815 (1999) J.L Jiménez, J. Nettleton, M. Bouchard, C.V. Robinson, C.M. Dobson, H.R. Saibil, Proc. Natl. Acad. Sci. U.S.A. 99, 9196 (2002) N. Rubin, E. Perugia, M. Goldschmidt, M. Fridkin, L. Addadi, J. Am. Chem. Soc. 130, 4602 (2008) A.E. Bevivino, P.J. Loll, Proc. Nat. Acad. Sci. U.S.A. 98, 11955 (2001) L. Li, T.A. Darden, L. Bartolotti, D. Kominos, L.G. Pedersen, Biophys. J. 76, 2871 (1999) R. Azriel, E. Gazit, J. Biol. Chem. 276, 34156 (2001) Y. Porat, A. Stepensky, F-X. Ding, F. Naider, E. Gazit, Biopolymers 69, 161 (2003) R. Nelson, M.R. Sawaya, M. Balbirnie, A.O. Madsen, C. Riekel, R. Grothe, D. Eisenberg, Nature 435, 773 (2005) F.A. Aldaye, A.L. Palmer, H.F. Sleiman, Science 321, 1795 (2008) F. Pullara, A. Emanuele, Proteins Struct. Funct. Bioinf. 73, 1037 (2008) C. Arnold, Chem. Eng. News 86, 48 (2008) S. Sato, M. Kushima, Mol. Cryst. Liq. Cryst. 141, 229 (1986) V.M. Pergamenshchik, V.Y. Gayvoronsky, S.V. Yakunin, R.M. Vasyuta, V.G. Nazarenko, O.D. Lavrentovich, Mol. Cryst. Liq. Cryst. 454, 145 (2006) V. Kozmík, A. Kovářová, M. Kuchař, J. Svoboda, V. Novotná, M. Glogarová, J. Kroupa, Liq. Crys. 33, 41 (2006) V. Manjuladevi, J.K. Vij, Liq. Cryst. 34, 963 (2007) E. Iizuka, Adv. Biophys. 24, 1 (1988) P. Jonkheijm van der Schoot, A.P. Schenning, E.W. Meijer, Science 313, 80 (2006)