Formation of a Matter-Wave Bright Soliton

American Association for the Advancement of Science (AAAS) - Tập 296 Số 5571 - Trang 1290-1293 - 2002
Lev Khaykovich1, Florian Schreck1, G. Ferrari2,1, Thomas Bourdel1, J. Cubizolles1, Lincoln D. Carr1, Yvan Castin1, C. Salomon1
1Laboratoire Kastler Brossel, Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris Cedex 05, France
2European Laboratory for Non-Linear Spectroscopy–Istituto Nazı́onale per la Fisica della Materia, Largo E. Fermi 2, Firenze 50125, Italy.

Tóm tắt

We report the production of matter-wave solitons in an ultracold lithium-7 gas. The effective interaction between atoms in a Bose-Einstein condensate is tuned with a Feshbach resonance from repulsive to attractive before release in a one-dimensional optical waveguide. Propagation of the soliton without dispersion over a macroscopic distance of 1.1 millimeter is observed. A simple theoretical model explains the stability region of the soliton. These matter-wave solitons open possibilities for future applications in coherent atom optics, atom interferometry, and atom transport.

Từ khóa


Tài liệu tham khảo

See for example the recent special issue: Chaos 10 471 (2000).

Ruprecht P. A., Holland M. J., Burnett K., Edwards M., Phys. Rev. A 51, 4704 (1995).

Bradley C. C., Sackett C. A., Hulet R. G., Phys. Rev. Lett. 78, 985 (1997).

Roberts J. L., et al., Phys. Rev. Lett. 86, 4211 (2001).

Zakharov V. E., Shabat A. B., Sov. Phys. JETP 34, 62 (1972).

Pèrez-Garcı̀a V. M., Michinel H., Herrero H., Phys. Rev. A 57, 3837 (1998).

Carr L. D., Leung M. A., Reinhardt W. P., J. Phys. B 33, 3983 (2000).

10.1103/PhysRevLett.83.5198

10.1126/science.287.5450.97

10.1103/PhysRevA.47.4114

V. Venturi C. Williams personal communication.

Mewes M.-O., Ferrari G., Schreck F., Sinatra A., Salomon C., Phys. Rev. A 61, 011403R (2000).

Schreck F., et al., Phys. Rev. A 64, 011402R (2001).

10.1103/PhysRevLett.87.080403

See for instance

10.1016/S1049-250X(08)60186-X

10.1038/32354

Roberts J. L., Claussen N. R., Cornish S. L., Wieman C. E., Phys. Rev. Lett. 85, 728 (2000).

10.1103/PhysRevLett.87.010404

In the vertical direction a residual astigmatism of the imaging system gives a resolution limit of 16 μm.

Over this distance the change in magnetic field due to the curvature is 0.1 G and therefore the change in the scattering length is negligible (Fig. 2).

Kagan Y., Muryshev A. E., Shlyapnikov G. V., Phys. Rev. Lett. 81, 933 (1998).

L. D. Carr Y. Castin in preparation.

We are grateful to K. Corwin M. Olshanii G. Shlyapnikov C. Williams V. Venturi and B. Esry for important contributions to this work and to J. Dalibard and C. Cohen-Tannoudji for useful discussions. Supported by the DAAD (F.S.) the European Union network CT 2000-00165 CAUAC (G.F.) and the NSF MPS-DRF 0104447 (L.D.C.). This work was supported by CNRS Collège de France and Région Ile de France. Laboratoire Kastler Brossel is Unité de recherche de l'Ecole Normale Supérieure et de l'Université Pierre et Marie Curie associated with CNRS.