Form Class Groups and Class Fields of CM-Fields
Tóm tắt
Let F be a totally real number field of class number one, and let K be a CM-field with F as its maximal real subfield. For each positive integer N, we construct a class group of certain binary quadratic forms over F which is isomorphic to the ray class group of K modulo N. Assuming further that the narrow class number of F is one, we construct a class field of the reflex field of K in terms of the singular values of Hilbert modular functions.
Tài liệu tham khảo
Aluffi, P.: Algebra: chapter 0, Grad. Studies in Math. 104, Amer. Math. Soc., Providence, R. I. (2009)
Baily, W.L., Jr., Borel, A.: Compactification of arithmetic quotients of bounded symmetric domains. Ann. Math. 2(84), 442–528 (1966)
Bhargava, M.: Higher composition laws I: a new view on Gauss composition, and quadratic generalizations. Ann. Math. 159(1), 217–250 (2004)
Bhargava, M.: Higher composition laws II: on cubic analogues of Gauss composition. Ann. Math. 159(2), 864–886 (2004)
Bhargava, M.: Higher composition laws III: the parametrization of quartic rings. Ann. Math. 159(3), 1329–1360 (2004)
Buell, D.A.: Ideal composition in quadratic fields: from Bhargava to Gauss. Ramanujan J. 29(1–3), 31–49 (2012)
Butts, H.S., Dulin, B.J.: Composition of binary quadratic forms over integral domains. Acta Arith. 20, 223–251 (1972)
Butts, H.S., Pall, G.: Modules and binary quadratic forms. Acta Arith. 15, 23–44 (1968)
Cox, D.A.: Primes of the Form \(x^2+ny^2\): Fermat, Class field theory, and Complex Multiplication, 2nd edn, Pure and Applied Mathematics (Hoboken). Wiley, Hoboken (2013)
Gauss, C.F.: Disquisitiones Arithmeticae. Leipzig (1801)
Hasse, H.: Neue Begründung der Komplexen Multiplikation I. J. für die Reine und Angewandte Math. 157, 115–139 (1927)
Hasse, H.: Neue Begründung der Komplexen Multiplikation II. J. für die Reine und Angewandte Math. 165, 64–88 (1931)
Hecke, E.: Höhere Modulfunktionen und ihre Anwendung auf die Zahlentheorie. Math. Ann. 71, 1–37 (1912)
Hecke, E.: Über die Konstruktion relativ-abelscher Zahlkörper duch Modulfunktionen von zwei Variablen. Math. Ann. 74, 465–510 (1913)
Hungerford, T.W.: Algebra, Grad. Texts in Math. 73, Springer-Verlag, New York-Berlin (1980)
Hurwitz, A.: Mathematische Werke, Bd. II: Zahlentheorie, Algebra und Geometrie. Birkhäuser, Basel-Stuttgart (1963)
Janusz, G.J.: Algebraic Number Fields, 2nd edn, Grad. Studies in Math. 7, Amer. Math. Soc., Providence, R. I. (1996)
Kaplansky, I.: Composition of binary quadratic forms. Studia Math. 31, 523–530 (1968)
Kneser, M.: Composition of binary quadratic forms. J. Number Theory 15(3), 406–413 (1982)
Kubert, D., Lang, S.: Modular Units, Grundlehren der mathematischen Wissenschaften, vol. 244. Spinger, New York (1981)
Lang, S.: Algebraic Number Theory, 2nd edn, Grad. Texts in Math. 110, Spinger, New York (1994)
Mastropietro, M.W.: Quadratic forms and relative quadratic extensions, Thesis (Ph.D.), University of California, San Diego (2000)
Milne, J.S.: Algebraic Number Theory. http://www.jmilne.org/math/CourseNotes/ANT.pdf
Narkiewicz, W.: Elementary and Analytic Theory of Algebraic Numbers, 3rd edition, Springer Monographs in Math., Springer, Berlin (2004)
Ramachandra, K.: Some applications of Kronecker’s limit formula. Ann. Math. 2(80), 104–148 (1964)
Schappacher, N.: On the history of Hilbert’s twelfth problem: a comedy of errors, Matériaux pour l’histoire des mathématiques au XX\(^{{\rm e}}\) siècle (Nice, 1996), 243–273, Sémin. Congr. 3, Soc. Math. France, Paris (1998)
Shimura, G.: On canonical models of arithmetic quotients of bounded symmetric domains. Ann. Math. 91, 144–222 (1970)
Shimura, G.: On canonical models of arithmetic quotients of bounded symmetric domains. Ann. Math. II(92), 528–549 (1970)
Shimura, G.: Abelian Varieties with Complex Multiplication and Modular Functions. Princeton University Press, Princeton (1998)
Shimura, G.: Arithmeticity in the theory of automorphic forms, Mathematical Surveys and Monographs, 82. Amer. Math. Soc., Providence, RI (2000)
Shimura, G., Taniyama, Y.: Complex Multiplication of Abelian Varieties and Its Applications to Number Theory, Publications of the Mathematical Society of Japan 6, Math. Soc. Japan, Tokyo (1961)
Siegel, C.L.: Lectures on Advanced Analytic Number Theory, Notes by S. Raghavan, Tata Institute of Fundamental Research Lectures on Mathematics 23, Tata Institute of Fundamental Research, Bombay (1965)
Silverman, J.H.: Advanced Topics in the Arithmetic of Elliptic Curves, Grad. Texts in Math. 151, Springer-Verlag, New York (1994)
Towber, J.: Composition of oriented binary quadratic form-classes over commutative rings. Adv. Math. 36(1), 1–107 (1980)
Wood, M.M.: Gauss composition over an arbitrary base. Adv. Math. 226(2), 1756–1771 (2011)
Zemkova, K.: Composition of quadratic forms over number fields, Master Thesis, Charles University (2018)