Foraminifera dissolution phases in the upper cretaceous succession of Jebel Duwi, Egypt

Springer Science and Business Media LLC - Tập 9 - Trang 185-203 - 2023
Orabi H. Orabi1, Mostafa M. Hamad2, Mahmoud M. Abu Saima3
1Geology Department, Faculty of Science, Menoufia University, Shibin Al-Kawm, Egypt
2Geology Department, Faculty of Science, Cairo University, Cairo, Egypt
3Geosciences Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates

Tóm tắt

The present work examines the function of differential dissolution in planktic and benthic foraminifera and introduces the major factors that affect dissolution in early Mid-Maastrichtian Event MME and Late Maastrichtian Event LME paleoenvironmental reconstructions. Two observations on foraminifera dissolution in the Dakhla Formation, where planktic foraminifera are more susceptible to dissolution than benthic foraminifera in the Hamama Member of the Jebel Duwi section, Eastern Desert (Egypt). They are characterized by a decline in the planktic/benthic (P/B) ratio and a rise in the agglutinated percentage. The results of those observations are used for revealing foraminiferal dissolution in these two zones (Racemiguembelina fructicosa CF4a and Pseudoguembelina palpebra CF2). During these two zones, there were excessive relative abundances of agglutinated foraminifera, indicating that these two intervals witnessed severe carbonate dissolution. The high total organic carbon (TOC) and low pH due to the presence of a lot of organic matter in the black shale’s of the Dakhla Formation of the upper Maastrichtian age is the explanation for the observed dissolution that has nothing to do with oceanographic or volcanic processes. The presence of pyrite within the black shale interval suggests low oxygen conditions and the potential for meteoric water to react with the pyrite and form sulfuric acid. This acid could dissolve any carbonate material well after the original deposition.

Tài liệu tham khảo

Berger WH (1967) Foraminifera ooze, solution at depth. Science 156(3773):383–385 Berger WH (1970) Planktonic foraminifera-selective solution and lysocline. Mar Geol 8(2):111–138 Berger WH (1973) Deep-sea carbonates: pleistocene dissolution cycles. J Foraminifera Res 3:187–195 Peterson LC, Prell WL (1985) Carbonate dissolution in recent sediments of the eastern equatorial Indian Ocean: preservation patterns and carbonate loss above the lysocline. Mar Geol 64(3–4):259–290 Dittert N, Baumann KH, Bickert T, Henrich R, Huber R, Kinkel H, Meggers H (1999) Carbonate dissolution in the deep-sea: methods, quantification and paleoceanographic application. In: Fischer G, Wefer G (eds) Use of proxies in paleoceanography: examples from the South Atlantic. Springer-Verlag, Berlin Heidelberg, pp 255–284 Thunell RC (1976) Optimum indices of calcium carbonate dissolution in deep-sea sediments. Geology 4(9):525–528 Petrizzo MR, Leoni G, Speijer RP, De Bernardi B, Felletti F (2008) Dissolution susceptibility of some Paleogene planktonic foraminifera from ODP site 1209 (Shatsky Rise, Pacific Ocean). J Foraminifera Res 38(4):357–371 Petrizzo MR, Huber BT, Falzoni F, MacLeod KG (2020) Changes in biogeographic distribution patterns of southern mid-to-high latitude planktonic foraminifera during the Late Cretaceous hot to cool greenhouse climate transition. Cretac Res 115:104547. https://doi.org/10.1016/j.cretres.104547 Nguyen TMP, Petrizzo MR, Speijer RP (2009) Experimental dissolution of a fossil foraminiferal assemblage (Paleocene-Eocene Thermal Maximum, Dababiya, Egypt): implications for paleoenvironmental reconstructions. Mar Micropaleontol 73:241–258 Van der Zwaan GJ, Jorissen FJ, De Stigter HC (1990) The depth-dependency of planktonicrbenthic foraminiferal rations; constraints and applications. Mar Geol 95:1–16 Martin RE, Liddell WD (1991) Taphonomy of foraminifera in modern carbonate environments: implication for the formation of foraminiferal assemblages. In: Donovan SK (ed) The processes of fossilization. Belhaven Press, London, pp 170–194 Martin RE (1993) Time and taphonomy: actualistic evidence for the time-averaging of benthic foraminiferal assemblages. In: Kidwell SM, Behrensmayer AK (eds) Taphonomic approaches to time resolution in fossil assemblages. Short courses in Paleontology, 6, 36–55 Thunell RC, Honjo S (1981) Calcite dissolution and the modification of planktonic foraminiferal assemblages. Mar Micropaleontol 6(2):169–182 Martin RE, Wright RC (1988) Information loss in the transition from life to death assemblages of foraminifera in back reef environments, Key-Largo Florida. J Paleontol 62(3):399–410 Le JN, Thunell RC (1996) Modeling planktic foraminiferal assemblage changes and application to sea surface temperature estimation in the western equatorial Pacific Ocean. Mar Micropaleontol 28(3–4):211–229 Speijer RP, Schmitz B (1998) A benthic foraminiferal record of Paleocene sea level and trophic/redox conditions at Gebel Aweina Egypt. Palaeogeogr, Palaeoclimatol, Palaeoecol 137(1–2):79–101 Murray JW, Alve E (1999) Natural dissolution of modern shallow water benthic foraminifera: taphonomic effects on the palaeoecological record. Palaeogeogr Palaeoclimatol Palaeoecol 146(1–4):195–209 Conan SMH, Ivanova EM, Brummer GJA (2002) Quantifying carbonate dissolution and calibration of foraminiferal dissolution indices in the Somali Basin. Mar Geol 182(3–4):325–349 Collins LS (1993) Neogene paleoenvironments of the Bocas-Del-Toro Basin Panama. J Paleontol 67(5):699–710 Bucefalo PR, Luchetti L (1997) Age and paleontological inferences of the upper Mont Falterona Sandstone Formation (Lonnano member, early Miocene) Northern Apennines. Giorn Geol 59(1–2):143–168 Boltovskoy E, Totah VI (1992) Preservation index and preservation potential of some foraminiferal species. J Foramin Res 22(3):267–273 Punekar J, Mateo P, Keller G (2014) Effects of Deccan volcanism on paleoenvironment and planktic foraminifera: a global survey. The Geological Society of America, Special Paper, p 505 Li L, Keller G, Stinnesbeck W (1999) The Late Campanian and Maastrichtian in northwestern Tunisia: paleoenvironmental inferences from lithology, macrofauna and benthic foraminifera. Cretac Res 20:231–252 Keller G, Punekar J, Mateo P (2016) Upheavals during the late Maastrichtian: volcanism, climate and faunal events preceding the end-Cretaceous mass extinction. Palaeogeogr Palaeoclimatol Palaeoecol 441:137–151 Schöbel S, de Wall H, Ganerod M, Pandit MK, Rolf C (2014) Magnetostratigraphy and 40Ar/39Ar geochronology of the Malwa Plateau region (northern Deccan Traps), central western India: significance and correlation with the main Deccan large igneous province sequences. J Asian Earth Sci 89:28–45. https://doi.org/10.1016/j.jseaes.2014.03.022 MacLeod KG, Huber BT, Ward PD (1996) The biostratigraphy and paleobiogeography of Maastrichtian inoceramids. In: Ryder G, Fastovsky D, Gartner S (eds) Special Paper, 307, The cretaceous-tertiary event and other catastrophes in earth history. Geological Society of America, Boulder, pp 361–373 Chauris H, LeRousseau J, Beaudoin B, Propson S, Montanari A (1998) Inoceramid extinction in the Gubbio basin (northeastern Apennines of Italy) and relations with mid-Maastrichtian environmental changes. Palaeogeogr Palaeoclimatol Palaeoecol 139:177–193 Barrera E, Savin SM (1999) Evolution of Campanian–Maastrichtian marine climates and oceans. In: Barrera E, Johnson CC (eds) Evolution of the cretaceous ocean–climate system. Geological Society of America, Special Paper, 332, 245–282 Friedrich O, Herrle JO, Wilson PA, Cooper MJ, Erbacher J, Hemleben C (2009) Early Maastrichtian carbon cycle perturbation and cooling event: implications from the South Atlantic Ocean. Paleoceanography 24(2):PA2211 Li L, Keller G, Adatte T, Stinnesbeck W (2000) Late Cretaceous sea level changes in Tunisia: a multidisciplinary approach. Geol Soc Lond 157:447–458 Payandeh AR, Justic D, Mariotti G, Huang H, Sorourian S (2019) Subtidal water level and current variability in a bar-built estuary during cold front season: Barataria Bay, Gulf of Mexico. J Geophys Res Oceans 124(10):7226–7246 Premoli Silva I, Sliter WV (1999) Cretaceous paleoceanography: evidence from planktonic foraminiferal evolution. In: Barrera E, Johnson CC (eds) The evolution of cretaceous ocean-climatic system. Geological Society of America, Special Paper, 332, 301–328 Keller G (2021) Erratum to “Mercury linked to Deccan traps volcanism, climate change and the end-Cretaceous mass extinction 194, 103312.” Glob Planet Change 198:103388. https://doi.org/10.1016/j.gloplacha.2020.103312 Nguyen TMP, Speijer RP (2014) A new procedure to assess dissolution based on experiments on Pliocene-Quaternary foraminifera (ODP Leg 160, Eratosthenes Seamount, Eastern Mediterranean). Mar Micropaleontol 106:22–38 Petró SM, Pivel MAG, Coimbra CJ (2018) Foraminiferal solubility rankings: a contribution to the search for consensus. J Foramin Res 48(4):301–313 Sheldon RP (1981) Ancient marine phosphorites. Annu Rev Earth Planet Sci 9:251–284 Glenn CR (2016) Depositional sequences of the Duwi, Sibaiya and phosphate formations, Egypt: phosphogenesis and glauconitization in a Late Cretaceous epeiric sea. Geol Soc Spec Pub 52:205–222 Kerdany MT, Cherif O (1990) Mesozoic. Chapter 22. In: Said R (ed) Geology of Egypt. A. Balkema, Rotterdam, p 727 Glenn CR, Arthur MA (1990) Anatomy and origin of a Cretaceous phosphorite-greensand giant Egypt. Sedimentology 37:123–154 El-Gammal RMH, Orabi HO (2019) Coniacian-late Campanian planktonic events in the Duwi formation, Red Sea region Egypt. J Geol Geophys 8(1):16 Issawi B (1968) The geology of Kurkur-Dungul area. Geological Survey, Egypt, paper 46, p 102 Said R (ed) (1990) The geology of egypt. Balkema, p 734 El-Sabbagh A, Tantawy A, Keller G, Khozyem H, Spangenberg J, Adatte T, Gertsch B (2011) Stratigraphy of the cenomanian-turonian oceanic anoxic event OAE2 in shallow shelf sequences of NE Egypt. Cretac Res 32(6):705–722 Abdel-Malik WM (1982) Calcareous nannoplankton from the sequence between Dakhla and Esna Shale formations (Upper Cretaceous-Lower Eocene) Quseir area Egypt. Rev Espec Micropaleontol 14:73–84 Schrank E (1984) Organic geochemical and palynological studies of Dakhla Shale (Late Cretaceous) in southeast Egypt. Part A—succession of microflora and depositional environment. Berliner Geowissenschaftlichen Abhandlungen 50:189–207 Schrank E (1987) Paleozoic and Mesozoic palynomorphs from Northeast Africa (Egypt and Sudan) with special reference to Late Cretaceous pollen and dinoflagellates. Berliner Geowissenschaftlichen Abhandlungen 75(A1):249–310 El-Kammar AM, Morsy RS, Sharabi S (2013) Biostratigraphical, petrographical and mineralogical characterization of the Upper Cretaceous–Lower Tertiary sedimentary succession of Wassief area, Red Sea, Egypt. Presented and Abstracted in the Annual Meeting of Geological Society, Cairo El-Kammar MM (2015) Source-rock evaluation of the Dakhla Formation black shale in Gebel Duwi, Quseir area Egypt. J Afr Earth Sci 104:19–26 Abdel Razik T (1972) Comparative studies on the Upper Cretaceous-Early Paleogene 723 sediments on the Red Sea Coast, Nile Valley and Western Desert, Egypt. 9th 708 Arab 724 Petroleum Congress. Algiers 3B:23–71 Masters BA (1984) Comparison of Planktonic Foraminifera at the Cretaceous-Tertiary Boundary from the El Horia Shale (Tunisia) and the Esna Shale (Egypt). In: EGPC 7th Exploration Seminar, Cairo, pp 310–324 Issawi B (1972) Review of upper cretaceous-lower tertiary stratigraphy in central and southern Egypt. Am Asso Petrol Geol Bull 56:1448–1463 Garrison RF, Glenn CR, Snavely PD, Mansour SEA (1979) Sedimentology and origin of Upper Cretaceous phosphorite deposits at Abu Tartur, Western Desert Egypt. Ann Geol Surv Egypt 9:261–281 Orabi HO, El Gammal RM (2021) Biostratigraphic and paleoecological significance of benthic foraminiferal morphogroups in the uppermost Turonian–upper Campanian of Gebel Duwi Range, Red Sea Egypt. Arab J Geosci 14:168. https://doi.org/10.1007/s12517-020-06353-z Berger WH, Bonneau MC, Parker FL (1982) Foraminifera on the deep-sea floor: lysocline and dissolution rate. Oceanol Acta 5:249–258 (0399-1784//249) Malmgren BA (1987) Differential dissolution of Upper Cretaceous planktonic foraminifera from a temperate region of the South Atlantic Ocean. Mar Micropaleontol 11:251–271. https://doi.org/10.1016/0377-8398(87)90001-6 Henehan MJ, Hull PM, Penman DE, Rae JWB, Schmidt DN (2016) Biogeochemical significance of pelagic ecosystem function: an end-Cretaceous case study. Philos Trans R Soc B: Biol Sci 371:20150510. https://doi.org/10.1098/rstb.2015.0510 Nagy J, Kaminski MA, Kuhnt W, Bremer MA (2000) Agglutinated foraminifera from neritic to bathyal facies in the Palaeogene of Spitsbergen and the Barents Sea. In: Hart MB, Kaminski MA (eds) Proceedings of the Fifth International Workshop on Agglutinated Foraminifera, 7. Grzybowski Foundation special publication, pp 333–361 Setoyama E, Kaminski M, Tyszka J (2011) The Late Cretaceous –Early Paleocene palaeobathymetric trends in the south-western Barents Sea-Palaeoenvironmental implications of benthic foraminiferal assemblage analysis. Palaeogeogr Palaeoclimatol Palaeoecol 307:44–58 Setoyama E, Kaminiski MA, Tyszka J (2017) Late Cretaceous–Paleogene foraminiferal morphogroups as palaeoenvironmental tracers of the rifted Labrador margin, northern proto-Atlantic. In: Kaminski MA, Alegret L (eds) Proceedings of the Ninth International Workshop on Agglutinated Foraminifera, vol 22. Grzybowski Foundation special publication, pp 179–220 Stojanova V, Petrov G (2018) Paleoecological significance of benthic foraminiferal fauna from the Ovče Pole Basin Republic of Macedonia. Geologica Macedonica 32(1):45–57 Łukawska-Matuszewska K, Graca B, Brocławik O, Zalewska T (2019) The impact of declining oxygen conditions on pyrite accumulation in shelf sediments (Baltic Sea). Biogeochemistry 142:209–230. https://doi.org/10.1007/s10533-018-0530-2 Pardo A, Keller G (2008) Biotic effects of environmental catastrophes at the end of the Cretaceous: Guembelitria and Heterohelix blooms. Cretac Res 29:2058–1073 Keller G, Abramovich S (2009) Lilliput effect in late Maastrichtian planktic foraminifera: response to environmental stress. Palaeogeogr Palaeoclimatol Palaeoecol 284:47–62 Douglas RG (1973) Benthonic foraminiferal biostratigraphy in the Central North Pacific Leg 17, deep sea Drilling Project. In: Winterer EL, Ewing JI (eds) Deep sea drilling project. Initial Reports 17 (Available from World Wide Web: http://deepseadrilling.org/17/volume/dsdp17-21.pdf Martin RE, Harris MS, Liddell WD (1995) Taphonomy and time averaging of foraminiferal assemblages in Holocene tidal flat sediments, Bahia la Choya, Sonora, Mexico (northern Gulf of California). Mar Micropaleontol 26(1–4):187–206 Yasuhara M, Hunt G, Cronin TM, Hokanishi N, Kawahata H, Tsujimoto A, Ishitake M (2012) Climatic forcing of Quaternary deep-sea benthic communities in the North Pacific Ocean. Paleobiology 38(1):162–179 Kranner M, Harzhauser M, Beer C, Auer G, Piller WE (2022) Calculating dissolved marine oxygen values based on an enhanced Benthic Foraminifera Oxygen Index. Sci Rep 12:1376. https://doi.org/10.1038/s41598-022-05295-8 Tyszka J (2009) Foraminiferal response to seasonality modulated by orbital cycles in the Cretaceous mid-latitudes: the Albian record from the Lower Saxony Basin. Palaeogeogr Palaeoecol Palaeoclimatol 276:148–159 Coccioni R, Galeotti S (1993) Orbitally induced cycles in benthonic foraminiferal morphogroups and trophic structure distribution patterns from the L Albian Amadeus segment (Central Italy). J Micropaleontol 12:227–239 Widmark JGV (1997) Deep-sea benthic foraminifera from Cretaceous-Paleogene boundary strata in the South Atlantic taxonomy and paleoecology. Fossils Strata 43:1–94 Grunert P (2011) Integrated facies analysis and stratigraphy of the Early Miocene North Alpine foreland basin (Upper Austria). Unpublished Ph.D. Thesis, Karl Franzens Universität Graz Rückheim S, Bornemann A, Mutterlose J (2006) Planktic foraminifera from the mid-Cretaceous (Barremian-early Albian) of the North Sea Basin: palaeoecological and palaeoceanographic implications. Mar Micropaleontol 58:83–102 Nagy J, Gradstein FM, Kaminski MA, Holbourn AE (1995) Foraminiferal morphogroups, palaeoenvironments and new taxa from Jurassic to cretaceous strata of Thakkhola, Nepal. In: Kaminski MA, Geroch S, Gasiński MA (eds) Proceedings of the Fourth International Workshop on Agglutinated Foraminifera, 3. Grzybowski Foundation special publication, pp 181–209 Nagy J, Kaminski MA, Johnsen K, Mitlehner AG (1997) Foraminiferal, palynomorph, and diatom biostratigraphy and paleoenvironments of the Tork Formation: a reference section for the Paleocene–Eocene transition in the western Barents Sea. In: Hass HC, Kaminski MA (eds) Contributions to the micropaleontology and paleoceanography of the northern North Atlantic, Grzybowski Foundation Special Publication, 5, pp 15–38 Haynes JR (1981) Foraminifera. Macimilian Publishers Ltd, London, p 433 Løfaldli M, Nagy J (1980) Foraminiferal stratigraphy of Jurassic deposits on Kongsøya. Svalbard Skr Nor Polarinst 172:63–96 Nagy J, Løfaldli M, Beackstreom SA (1988) Aspects of foraminiferal distribution and depositional conditions in Middle Jurassic to Early Cretaceous shales in eastern Spits Bergen. In: Reogl F, Gradstein FM (eds) Second workshop agglutinated foraminifera, 30. Abhandlungen der geologischen Bundesanstalt, Wien, pp 287–300 Nagy J, Pilskog B, Wilhelmsen R (1990) Facies controlled distribution of foraminifera in the Jurassic North Sea Basin. In: Hemleben C et al. (eds) Paleoecology, biostratigraphy, paleoceanography and taxonomy of agglutinated foraminifera. NATO ASI Series C327. Kluwer Academic Publishers, pp 621–657 Phleger FB (1960) Foraminiferal population in Laguna Madre, Texas. Sci. Rep. Tohoku University Special, 4, 83–91 (Tohoku) Murray JW (1967) Living foraminiferids of tidal marshes—a review. J Foram Res 1:153–161 Murray JW (1973) Distribution and ecology of living benthic foraminiferids. Heinemann Educ Book, London, p 274 Bradshaw JS (1968) Environmental parameters and marsh Foraminifera. Limnol Oceanogr 13:26–30 Abou El-Anwar EA (2017) Mineralogical, petrographical, geochemical, diageneses and provenance of the Cretaceous Black Shales, Duwi Formation at Quseir-Safaga, Red Sea Egypt. Egypt J Pet 26(4):915–926 Parker FL, Berger WH (1971) Faunal and solution patterns of planktonic foraminifera in surface sediments of the South Pacific. Deep-Sea Res 18:73–107 Manda S, Punekar J (2020) Experimental validation of the planktic foraminifera fragmentation index as proxy for the end-Cretaceous Ocean Acidification. Mar Micropaleontol 155:101821 Keller G (2002) Guembelitria-dominated planktic foraminiferal assemblages mimic early Danian in Central Egypt. Mar Micropaleontol 47:71–99 Olsson RK, Wright JD, Miller KG (2001) Paleobiogeography of Pseudotextularia elegans during the latest Maastrichtian global warming event. J Foramin Res 31(3):275–282. https://doi.org/10.2113/31.3.275 Henehan MJ, Ridgwell A, Thomas E, Zhang S, Alegret L, Schmidt DN, Rae JWB, Witts JD, Landman NH, Greene SE, Huber BT, Super JR, Planavsky NJ, Hull PM (2019) Rapid ocean acidification and protracted Earth system recovery followed the end-Cretaceous Chicxulub impact. Proc Natl Acad Sci USA 116:22500–22504. https://doi.org/10.1073/pnas.1905989116 Gilabert V, Arz AJ, Arenillas I, Robinson SA, Ferrer D (2021) Influence of the Latest Maastrichtian Warming Event on planktic foraminiferal assemblages and ocean carbonate saturation at Caravaca Spain. Cretac Res 125:104844