Footstep Energy Harvesting with the Magnetostrictive Fiber Integrated Shoes
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ylli, 2015, Energy harvesting from human motion: Exploiting swing and shock excitations, Smart Mater. Struct., 24, 025029, 10.1088/0964-1726/24/2/025029
Narita, 2019, Fabrication and impact output voltage characteristics of carbon fiber reinforced polymer composites with lead-free piezoelectric nano-particles, Mater. Lett., 236, 487, 10.1016/j.matlet.2018.10.174
Wang, Z., and Narita, F. (2019). Corona poling conditions for barium titanate/epoxy composites and their unsteady wind energy harvesting potential. Adv. Eng. Mater., in press.
Mateu, 2006, Appropriate charge control of the storage capacitor in a piezoelectric energy harvesting device for discontinuous load operation, Sens. Actuators A, 123, 302, 10.1016/j.sna.2006.06.061
Rocha, 2010, Energy harvesting from piezoelectric materials fully integrated in footwear, Trans. Ind. Electr., 57, 813, 10.1109/TIE.2009.2028360
Alumusallam, 2013, Screen-printed piezoelectric shoe-insole energy harvester using an improved flexible PZT-polymer composites, J. Phys. Conf. Ser., 476, 012108, 10.1088/1742-6596/476/1/012108
Jung, 2015, Powerful curved piezoelectric generator for wearable applications, Nano Energy, 13, 174, 10.1016/j.nanoen.2015.01.051
Kalantarian, 2016, Pedometers without batteries: An energy harvesting shoe, Sens. J., 16, 8314
Turkman, 2018, Energy harvesting with the piezoelectric material integrated shoe, Energy, 150, 556, 10.1016/j.energy.2017.12.159
Siddiqui, 2016, A durable and stable piezoelectric nanogenerator with nanocomposite nanofibers embedded in an elastomer under high loading for a self-powered sensor system, Nano Energy, 30, 434, 10.1016/j.nanoen.2016.10.034
Deng, 2017, Review of magnetostrictive vibration energy harvesters, Smart Mater. Struct., 26, 103001, 10.1088/1361-665X/aa8347
Narita, 2018, A review on piezoelectric, magnetostrictive, and magnetoelectric materials and device technologies for energy harvesting applications, Adv. Eng. Mater., 20, 1700743, 10.1002/adem.201700743
Yang, 2018, Magnetostrictive clad steel plates for high-performance vibration energy harvesting, Appl. Phys. Lett., 112, 073902, 10.1063/1.5016197
Yan, 2018, Magnetostrictive energy generator for harvesting the rotation of human knee joint, AIP Adv., 8, 056730, 10.1063/1.5007195
Narita, 2017, Inverse magnetostrictive effect in Fe29Co71 wire/polymer composites, Adv. Eng. Mater., 19, 1600586, 10.1002/adem.201600586
Narita, 2017, Stress-rate dependent output voltage for Fe29Co71 magnetostrictive fiber/polymer composites: Fabrication, experimental observation and theoretical prediction, Mater. Trans., 58, 302, 10.2320/matertrans.M2016410
Katabira, K., Yoshida, Y., Masuda, A., Watanabe, A., and Narita, F. (2018). Fabrication of Fe-Co magnetostrictive fiber reinforced plastic composites and their sensor performance evaluation. Materials, 11.