Sự tương tác của mạng lưới thức ăn giữa hai loài chim bờ biển sinh sản ở Bắc Cực, chim đuôi ngắn Calidris minuta và chim rằn ràng Calidris canutus, được hình thành bởi sự phân bố độ cao của chúng

Mikhail K. Zhemchuzhnikov1, Thomas K. Lameris1, Mikhail Soloviev2, Viktor V. Golovnyuk2, Job ten Horn1, Dmitry Kutcherov3, Anastasia B. Popovkina2, Maria G. Sukhova4, Elena A. Zhemchuzhnikova1, Jan A. van Gils5
1Department of Coastal Systems, NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, 1790 AB, Den Burg, The Netherlands
2Department of Vertebrate Zoology, Lomonosov Moscow State University, Moscow, 119234, Russia
3Department of Biological Sciences, University of Arkansas, Fayetteville , AR 72701, USA
4A. N. Severtsov Institute of Ecology and Evolution RAS, Moscow 119071, Russia
5Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, PO Box 11103, 9700 CC, Groningen, The Netherlands

Tóm tắt

Tóm tắtCác loài chim thường phải chọn vị trí làm tổ dựa trên trục an toàn thực phẩm, cân bằng giữa nguy cơ bị ăn thịt trong tổ với nhu cầu thực phẩm của bản thân và con non. Điều này có lẽ đặc biệt quan trọng đối với các loài chim cấp cứu, chẳng hạn như hầu hết các loài chim bờ biển, nơi cả chim non và cha mẹ đều cần tiếp cận nguồn thực phẩm trong khu vực tổ, ít nhất là trong những ngày đầu của cuộc sống của chim non. Trong nhiều hệ sinh thái Bắc Cực, tổ của các loài chim bờ biển thường dễ gặp nguy cơ bị ăn thịt bởi cả kẻ thù trên không và dưới đất, đặc biệt trong những năm thiếu lemming. Giữa những yếu tố khác, sức mạnh của các tác động sinh thái giữa các loài chim bờ biển, con mồi của chúng và kẻ săn mồi phụ thuộc vào cách mà tất cả những loài này được phân bố trong không gian. Trong hai mùa sinh sản ở phía bắc Taimyr, Nga Trung Bắc, chúng tôi đã nghiên cứu cách sự phân bố không gian của tổ và đàn chim rằn ràng Calidris canutus và chim đuôi ngắn Calidris minuta chồng lấp với cảnh quan thực phẩm địa phương và cũng như với sự phân bố của các kẻ thù trên không và con mồi chính của chúng, lemming. Chúng tôi phát hiện rằng hai loài chim bờ biển sử dụng các môi trường sống khác nhau có sự khác biệt về cấu trúc cộng đồng chân đốt tương ứng với chế độ ăn của chim: trong khi chim đuôi ngắn chọn những khu vực có độ cao thấp hơn nơi mà sinh vật midge Chironomidae phong phú hơn, chim rằn ràng chọn những khu vực có độ cao cao hơn nơi mà sinh vật ruồi bờ Tipulidae phong phú hơn. Hơn nữa, chim đuôi ngắn chia sẻ môi trường sống có độ cao thấp với lemming và kẻ thù, trong khi chim rằn ràng sống ở những độ cao mà cả lemming và các kẻ thù trên không đều tránh xa. Chúng tôi nhận thấy tỷ lệ tổ bị ăn thịt của tổ chim đuôi ngắn cao hơn hẳn so với tổ chim rằn ràng, đặc biệt là trong năm thiếu lemming. Kết quả của chúng tôi do đó hỗ trợ ý tưởng rằng các tương tác trong mạng lưới thức ăn bị ảnh hưởng bởi các khía cạnh về cảnh quan và cộng đồng.

Từ khóa


Tài liệu tham khảo

Abràmoff MD, Magalhães PJ, Ram SJ (2004) Image processing with imageJ. Biophotonics Int 11:36–41. https://doi.org/10.1201/9781420005615.ax4

Aharon-Rotman Y, Soloviev M, Minton C et al (2015) Loss of periodicity in breeding success of waders links to changes in lemming cycles in Arctic ecosystems. Oikos 124:861–870. https://doi.org/10.1111/oik.01730

Andreeva TR, Tomkovich PS (1992) On the role of the chick food in formation of the structure of shorebird population on the tundra. In: Coenotic interactions in tundra ecosystems. Nauka, Moscow, pp 70–78

Angerbjörn A, Tannerfeldt M, Erlinge S (1999) Predator-prey relationships: Arctic foxes and lemmings. J Anim Ecol 68:34–49. https://doi.org/10.1046/j.1365-2656.1999.00258.x

Arnold TW (2010) Uninformative parameters and model selection using Akaike’s Information Criterion. J Wildl Manage 74:1175–1178. https://doi.org/10.2193/2009-367

Baker MC (1977) Shorebird food habits in the Eastern Canadian Arctic. Condor 79:56–62. https://doi.org/10.2307/1367530

Baker MC, Baker AEM (1973) Niche relationships among six species of shorebirds on their wintering and breeding ranges. Ecol Monogr 43:193–212. https://doi.org/10.2307/1942194

Bolduc E, Casajus N, Legagneux P et al (2013) Terrestrial arthropod abundance and phenology in the Canadian Arctic: Modelling resource availability for Arctic-nesting insectivorous birds. Can Entomol 145:155–170. https://doi.org/10.4039/tce.2013.4

Brown JS (1988) Patch use as an indicator of habitat preference, predation risk, and competition. Behav Ecol Sociobiol 22:37–47

Bulla M, Valcu M, Dokter AM et al (2016) Unexpected diversity in socially synchronized rhythms of shorebirds. Nature 540:109–113. https://doi.org/10.1038/nature20563

Burnham KP, Anderson DR (2002) Model selection and inference: a practical information-theoretic approach, 2nd editio. Springer, New York

Chatterjee S, Hadi AS (2006) Regression analysis by example, 4th edn. John Wiley & Sons Inc, Hoboken

Cunningham JA, Kesler DC, Lanctot RB (2016) Habitat and social factors influence nest-site selection in Arctic-breeding shorebirds. Auk 133:364–377. https://doi.org/10.1642/AUK-15-196.1

Dinsmore SJ, White GC, Knopf FL (2002) Advanced techniques for modeling avian nest survival. Ecology 83:3476–3488. https://doi.org/10.2307/3072096

Dupuch A, Morris DW, Ale SB et al (2014) Landscapes of fear or competition? Predation did not alter habitat choice by Arctic rodents. Oecologia 174:403–412. https://doi.org/10.1007/s00442-013-2792-7

Eide NE, Eid PM, Prestrud P, Swenson JE (2005) Dietary responses of arctic foxes Alopex lagopus to changing prey availability across an Arctic landscape. Wildlife Biol 11:109–121. https://doi.org/10.2981/0909-6396(2005)11[109:DROAFA]2.0.CO;2

Elmhagen B, Tannerfeldt M, Verucci P, Angerbjörn A (2000) The arctic fox (Alopex lagopus): an opportunistic specialist. J Zool 251:139–149. https://doi.org/10.1017/S0952836900006014

Forchhammer MC, Schmidt NM, Høye TT et al (2008) Population dynamical responses to climate change. Adv Ecol Res 40:391–419. https://doi.org/10.1016/S0065-2504(07)00017-7

Fox J (1997) Applied regression analysis, linear models, and related methods. Sage Publications, Thousand Oaks

Ganter B, Boyd H (2000) A tropical volcano, high predation pressure, and the breeding biology of Arctic waterbirds: a circumpolar review of breeding failure in the summer of 1992. Arctic 53:289–305. https://doi.org/10.14430/arctic859

Gilg O, Sittler B, Sabard B et al (2006) Functional and numerical responses of four lemming predators in high arctic Greenland. Oikos 113:193–216. https://doi.org/10.1111/j.2006.0030-1299.14125.x

Graham MH (2003) Confronting multicollinearity in ecological multiple regression. Ecology 84:2809–2815. https://doi.org/10.1890/02-3114

Holmes RT, Pitelka FA (1968) Food overlap among coexisting sandpipers on northern Alaskan tundra. Syst Zool 17:305–318

Hoy SR, Millon A, Petty SJ et al (2016) Food availability and predation risk, rather than intrinsic attributes, are the main factors shaping the reproductive decisions of a long-lived predator. J Anim Ecol 85:892–902. https://doi.org/10.1111/1365-2656.12517

Ims RA, Killengreen ST, Ehrich D et al (2017) Ecosystem drivers of an Arctic fox population at the western fringe of the Eurasian Arctic. Polar Res. https://doi.org/10.1080/17518369.2017.1323621

Jacobs J (1974) Quantitative measurement of food selection: a modification of the forage ratio and Ivlev’s electivity index. Oecologia 14:413–417

Johnson JA, DeCicco LH, Hajdukovich NR (2020) Using playbacks of chick vocalizations to locate and capture breeding red knots. Wader Study 127:1–5. https://doi.org/10.18194/ws.00206

Kirikova TA, Kharitonov SP, Varlygina TI et al (2005) Distribution of breeding waders in tundra of the North-Western Taimyr according to the area and food capacity of habitats. Branta 8:54–79

Koltz AM, Schmidt NM, Høye TT (2018) Differential arthropod responses to warming are altering the structure of arctic communities. R Soc Open Sci 5:171503. https://doi.org/10.1098/rsos.171503

Krebs J (1977) Optimal foraging: theory and experiment. Nature 268:583–584. https://doi.org/10.1038/268583a0

Kutner MH, Nachtsheim CJ, Neter J, Li W (2005) Applied Linear Statistical Models, 5th editio. McGraw-Hill/Irwin, New York

Laake JL (2013) RMark: An R interface for analysis of capture-recapture data with MARK. Seattle

Lamarre JF, Legagneux P, Gauthier G et al (2017) Predator-mediated negative effects of overabundant snow geese on arctic-nesting shorebirds. Ecosphere 8:e01788. https://doi.org/10.1002/ecs2.1788

Lameris TK, Brown JS, Kleyheeg E et al (2018) Nest defensibility decreases home-range size in central place foragers. Behav Ecol 29:1038–1045. https://doi.org/10.1093/beheco/ary077

Lameris TK, Tomkovich PS, Johnson JA et al (2022) Mismatch-induced growth reductions in a clade of Arctic-breeding shorebirds are rarely mitigated by increasing temperatures. Glob Chang Biol 28:829–847. https://doi.org/10.1111/gcb.16025

Lank DB, Ydenberg RC (2003) Death and danger at migratory stopovers: problems with “predation risk.” J Avian Biol 34:225–228

Larson S (1960) On the influence of the arctic fox Alopex lagopus on the distribution of Arctic birds. Oikos 11:276–305

Léandri-Breton DJ, Bêty J (2020) Vulnerability to predation may affect species distribution: plovers with broader arctic breeding range nest in safer habitat. Sci Rep 10:1–8. https://doi.org/10.1038/s41598-020-61956-6

Lecomte N, Careau V, Gauthier G, Giroux JF (2008) Predator behaviour and predation risk in the heterogeneous Arctic environment. J Anim Ecol 77:439–447. https://doi.org/10.1111/j.1365-2656.2008.01354.x

Liebezeit JR, Zack S (2008) Point counts underestimate the importance of arctic foxes as avian nest predators: Evidence from remote video cameras in Arctic Alaskan oil fields. Arctic 61:153–161. https://doi.org/10.14430/arctic32

Liebezeit JR, Smith PA, Lanctot RB et al (2007) Assessing the development of shorebird eggs using the flotation method: Species-specific and generalized regression models. Condor 109:32–47. https://doi.org/10.1650/0010-5422(2007)109[32:ATDOSE]2.0.CO;2

Lifjeld JT (1984) Prey selection in relation to body size and bill length of five species of waders feeding in the same habitat. Ornis Scand 15:217–226. https://doi.org/10.2307/3675930

Lima SL, Dill LM (1990) Behavioral decisions made under the risk of predation: a review and prospectus. Can J Zool 68:619–640. https://doi.org/10.1139/z90-092

MacLean SF Jr (1973) Life cycle and growth energetics of the arctic cranefly Pedicia hannai antennata. Oikos 24:436–443

McNamara JM, Houston AI (1987) Starvation and predation as factors limiting population size. Ecology 68:1515–1519

Meyer N, Bollache L, Dechaume-Moncharmont FX et al (2020) Nest attentiveness drives nest predation in arctic sandpipers. Oikos 129:1481–1492. https://doi.org/10.1111/oik.07311

Meyer N, Bollache L, Galipaud M et al (2021) Behavioural responses of breeding arctic sandpipers to ground-surface temperature and primary productivity. Sci Total Environ 755:142485. https://doi.org/10.1016/j.scitotenv.2020.142485

Morris DW, Davidson DL, Krebs CJ (2000) Measuring the ghost of competition: Insights from density-dependent habitat selection on the co-existence and dynamics of lemmings. Evol Ecol Res 2:41–67

Myers RH (1986) Classical and modern regression with applications. Duxbury Press, Boston

Nolet BA, Bauer S, Feige N et al (2013) Faltering lemming cycles reduce productivity and population size of a migratory Arctic goose species. J Anim Ecol 82:804–813. https://doi.org/10.1111/1365-2656.12060

Pitelka FA, Holmes RT, MacLean SF (1974) Ecology and evolution of social organization in arctic sandpipers. Am Zool 14:185–204. https://doi.org/10.1093/icb/14.1.185

Pitt WC (1999) Effects of multiple vertebrate predators on grasshopper habitat selection: trade-offs due to predation risk, foraging, and thermoregulation. Evol Ecol 13:499–516. https://doi.org/10.1023/A:1006792726166

Pomeroy AC, Butler RW, Ydenberg RC (2006) Experimental evidence that migrants adjust usage at a stopover site to trade off food and danger. Behav Ecol 17:1041–1045. https://doi.org/10.1093/beheco/arl043

Porter C, Morin P, Howat I, et al (2018) ArcticDEM. Accessed on 31.08.2020

Quinn LD, Holt JS (2008) Ecological correlates of invasion by Arundo donax in three southern California riparian habitats. Biol Invasions 10:591–601. https://doi.org/10.1007/s10530-007-9155-4

R Core Team (2019) R: A language and environment for statistical computing. R foundation for statistical computing. Vienna, Austria

Reneerkens J, Schmidt NM, Gilg O et al (2016) Effects of food abundance and early clutch predation on reproductive timing in a high Arctic shorebird exposed to advancements in arthropod abundance. Ecol Evol 6:7375–7386. https://doi.org/10.1002/ece3.2361

Robinson BG, Franke A, Derocher AE (2014) The influence of weather and lemmings on spatiotemporal variation in the abundance of multiple avian guilds in the arctic. PLoS ONE. https://doi.org/10.1371/journal.pone.0101495

Schekkerman H, Van Roomen MWJ, Underhill LG (1998) Growth, behaviour of broods and weather-related variation in breeding productivity of Curlew Sandpipers Calidris ferruginea. Ardea 86:153–168

Schekkerman H, Tulp I, Piersma T, Visser GH (2003) Mechanisms promoting higher growth rate in arctic than in temperate shorebirds. Oecologia 134:332–342. https://doi.org/10.1007/s00442-002-1124-0

Smith PA, Gilchrist HG, Smith JNM (2007) Effects of nest habitat, food, and parental behavior on shorebird nest success. Condor 109:15–31. https://doi.org/10.1650/0010-5422(2007)109[15:EONHFA]2.0.CO;2

Smith PA, Tulp I, Schekkerman H et al (2012) Shorebird incubation behaviour and its influence on the risk of nest predation. Anim Behav 84:835–842. https://doi.org/10.1016/j.anbehav.2012.07.004

Soloviev MY, Golovnyuk V V., Popovkina AB, Sukhova MA (2018) Nesting conditions and abundance of birds in the area “Lower Taimyra” (Gusinnaya estuary): in Chronicles of Nature, 2018 of Great Arctic State Nature Reserve, Norilsk. 213–236

Stephens DW, Brown JS, Ydenberg RC (2007) Foraging: Behaviour and ecology. University of Chicago Press, Chicago

Summers RW, Underhill LG, Syroechkovski EEJ (1998) The breeding productivity of Dark-Bellied Brent geese and Curlew Sandpipers in relation to changes in the numbers of Arctic foxes and lemmings on the Taimyr peninsula, Siberia. Ecography (cop) 21:573–580

Tomkovich PS (1998) Breeding conditions for waders in Russian tundras in 1992. Int Wader Stud 10:117–123

Tomkovich PS, Soloviev MY (1994) Site fidelity in high arctic breeding waders. Ostrich 65:174–180. https://doi.org/10.1080/00306525.1994.9639680

Tomkovich PS, Johnson JA, Loktionov EY, DeCicco LH (2018) Brood attendance by female red knots. Wader Study 125:33–38. https://doi.org/10.18194/ws.00091

Tomkovich PS, Soloviev MY, Syroechkovsky Jr. EE (1994) Birds of the Arctic tundra of Northern Taimyr (Knipovich Bay area). In: Arctic tundra of Taimyr and the islands of the Kara Sea: Nature, fauna, and problems of their protection. Moscow, pp 44–110

Tulp I, Schekkerman H (2006) Time allocation between feeding and incubation in uniparental arctic-breeding shorebirds: energy reserves provide leeway in a tight schedule. J Avian Biol 37:207–218. https://doi.org/10.1111/j.2006.0908-8857.03519.x

Tulp I, Schekkerman H (2008) Has prey availability for arctic birds advanced with climate change? Hindcasting the abundance of tundra arthropods using weather and seasonal variation. Arctic 61:48–60. https://doi.org/10.14430/arctic6

Tulp I, Schekkerman H, Chylarecki P et al (2002) Body mass patterns of Little Stints at different latitudes during incubation and chick-rearing. Ibis 144:122–134. https://doi.org/10.1046/j.0019-1019.2001.00014.x

Tulp I, Schekkerman H, Bruinzeel LW et al (2009) Energetic demands during incubation and chick rearing in a uniparental and a biparental shorebird breeding in the high arctic. Auk 126:155–164. https://doi.org/10.1525/auk.2009.07181

Tulp I, Schekkerman H, de Leeuw J (2012) Eggs in the freezer: energetic consequences of nest site and nest design in arctic breeding shorebirds. PLoS ONE 7:1–9. https://doi.org/10.1371/journal.pone.0038041

Underhill LG, Prys-Jones RP, Syroechkovski EE Jr et al (1992) Breeding of waders (Charadrii) and Brent Geese Branta bernicla bernicla at Pronchishcheva Lake, northeastern Taimyr, Russia, in a peak and a decreasing lemming year. Ibis 135:277–292

van Beckerath X, Benadi G, Gilg O et al (2021) Long-term monitoring reveals topographical features and vegetation explain winter habitat use of an Arctic rodent. bioRxiv. https://doi.org/10.1101/2021.01.24.427984

van den Hout PJ, van Gils JA, Robin F et al (2014) Interference from adults forces young red knots to forage for longer and in dangerous places. Anim Behav 88:137–146. https://doi.org/10.1016/j.anbehav.2013.11.020

Verdolin JL (2006) Meta-analysis of foraging and predation risk trade-offs in terrestrial systems. Behav Ecol Sociobiol 60:457–464. https://doi.org/10.1007/s00265-006-0172-6

Walker DA, Daniëls FJA, Matveyeva NV et al (2018) Circumpolar Arctic vegetation classification. Phytocoenologia 48:181–201. https://doi.org/10.1127/phyto/2017/0192

Werner EE, Hall DJ (1974) Optimal foraging and the size selection of prey by the bluegill sunfish (lepomis Macrochirus). Ecology 55:1042–1052. https://doi.org/10.2307/1940354

White GC, Burnham KP (1999) Program mark: survival estimation from populations of marked animals. Bird Study 46:S120–S139. https://doi.org/10.1080/00063659909477239

Whitfield DP, Brade JJ (1991) The breeding behaviour of the Knot Calidris canutus. Ibis 133:246–255. https://doi.org/10.1111/j.1474-919X.1991.tb04566.x

Wiklund CG, Angerbjörn A, Isakson E et al (1999) Lemming predators on the Siberian tundra. Ambio 28:281–286

Wirta HK, Vesterinen EJ, Hambäck PA et al (2015) Exposing the structure of an Arctic food web. Ecol Evol 5:3842–3856. https://doi.org/10.1002/ece3.1647

Zhemchuzhnikov MK (2024) Reassessment of trophic mismatches in Arctic shorebirds. University of Groningen, Groningen. https://doi.org/10.33612/diss.908900225

Zhemchuzhnikov MK, Zhemchuzhnikova EA, Lameris TK et al (2022) Disentangling the diet composition of Arctic shorebirds ’ chicks provides a new perspective on trophic mismatches. bioRxiv. https://doi.org/10.1101/2022.10.10.511540