Foehn winds link climate‐driven warming to ice shelf evolution in Antarctica

Mattias Cape1,2, María Vernet1, Pedro Skvarca3, Sebastián Marinsek4, T. A. Scambos5, Eugene W. Domack6
1Scripps Institution of Oceanography, University of California, San Diego, California, USA
2Woods Hole Oceanographic Institution; Falmouth Massachusetts USA
3Glaciarium, Museo del Hielo Patagónico El Calafate Argentina
4Instituto Antártico Argentino, Buenos Aires, Argentina
5National Snow and Ice Data Center Boulder Colorado USA
6College of Marine Science, University of South Florida, St. Petersburg, Florida, USA

Tóm tắt

AbstractRapid warming of the Antarctic Peninsula over the past several decades has led to extensive surface melting on its eastern side, and the disintegration of the Prince Gustav, Larsen A, and Larsen B ice shelves. The warming trend has been attributed to strengthening of circumpolar westerlies resulting from a positive trend in the Southern Annular Mode (SAM), which is thought to promote more frequent warm, dry, downsloping foehn winds along the lee, or eastern side, of the peninsula. We examined variability in foehn frequency and its relationship to temperature and patterns of synoptic‐scale circulation using a multidecadal meteorological record from the Argentine station Matienzo, located between the Larsen A and B embayments. This record was further augmented with a network of six weather stations installed under the U.S. NSF LARsen Ice Shelf System, Antarctica, project. Significant warming was observed in all seasons at Matienzo, with the largest seasonal increase occurring in austral winter (+3.71°C between 1962–1972 and 1999–2010). Frequency and duration of foehn events were found to strongly influence regional temperature variability over hourly to seasonal time scales. Surface temperature and foehn winds were also sensitive to climate variability, with both variables exhibiting strong, positive correlations with the SAM index. Concomitant positive trends in foehn frequency, temperature, and SAM are present during austral summer, with sustained foehn events consistently associated with surface melting across the ice sheet and ice shelves. These observations support the notion that increased foehn frequency played a critical role in precipitating the collapse of the Larsen B ice shelf.

Từ khóa


Tài liệu tham khảo

10.1038/ngeo1787

10.1029/2012JF002559

10.1111/j.1365-2486.2008.01641.x

10.1016/j.rse.2008.07.006

10.1038/NGEO1671

10.1002/2013JC009441

10.5194/tc-4-77-2010

10.1029/2007JD008790

10.1002/2014GL059987

10.1175/JCLI-D-12-00729.1

10.1038/nature03908

10.1017/S0954102008001272

Durran D. R., 1990, Mountain waves and downslope winds, Meteorol. Monogr., 23, 59

Elvidge A. D.(2013) Polar föhn winds and warming over the Larsen C Ice Shelf Antarctica PhD thesis Univ. of East Anglia Norwich U. K.

10.1002/qj.2382

10.1002/qj.2489

10.1029/2006GL027721

10.5194/npg-11-561-2004

10.5194/acp-14-9481-2014

10.1016/j.dsr2.2010.05.024

10.1017/S0954102001000086

10.1175/1520-0477(1985)066<1123:WIAFC>2.0.CO;2

10.1029/2011GL047245

10.5194/tc-9-1005-2015

10.1175/JCLI-D-12-00813.1

10.1038/ngeo1188

10.1017/CBO9780511524967

10.1007/s10546-008-9271-4

10.5194/tc-6-353-2012

10.1029/2002GL015415

10.1029/2005JF000318

Long D. G. andB. R.Hicks(2010) Standard BYU quikscat and seawinds land/ice image products Tech. Rep. BYU Center for Remote Sensing. Provo Utah.

10.1175/JCLI-D-14-00202.1

10.1029/2007GL032170

10.1017/S0954102014000339

10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2

10.1175/JCLI3844.1

10.1017/S0022143000013861

10.1175/JCLI3805.1

10.1029/2007JC004239

10.1016/j.geomorph.2013.12.005

10.1175/JCLI-D-13-00733.1

10.1016/j.epsl.2014.04.019

10.1175/2007JAS2498.1

10.1126/science.aaa0940

10.1029/JC088iC04p02684

10.1175/BAMS-84-11-1533

10.1038/nature10968

10.1126/science.1256697

10.1029/2004GL020697

10.1002/2014GL060140

10.1029/AR079p0079

10.1016/j.epsl.2008.12.027

10.3189/172756500781833043

10.1029/2004GL020670

10.1016/j.rse.2006.12.020

10.3189/2013JoG12J170

10.1175/1520-0493(1975)103<0045:TEOTAP>2.0.CO;2

10.1029/JC084iC10p06321

10.1111/j.1751-8369.1999.tb00287.x

10.3189/172756499781821283

10.3189/172756404781814573

10.1175/2010JCLI3382.1

10.1002/joc.3481

10.1038/nature07669

10.1002/qj.2038

10.1002/qj.2278

10.1016/j.rse.2009.01.009

10.1126/science.1069270

10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2

10.1002/2013GL058138

10.1002/joc.965

10.1002/(SICI)1097-0088(19980315)18:3<253::AID-JOC248>3.0.CO;2-3

10.1029/2005GL023247

10.1175/2007JCLI1695.1

10.1023/A:1026021217991

10.5194/tcd-5-3053-2011