Foehn Event Triggered by an Atmospheric River Underlies Record‐Setting Temperature Along Continental Antarctica

Journal of Geophysical Research D: Atmospheres - Tập 123 Số 8 - Trang 3871-3892 - 2018
Deniz Bozkurt1, Roberto Rondanelli1,2, Julio C. Maŕın3,4, René Garreaud1,2
1Center for Climate and Resilience Research, University of Chile, Santiago, Chile
2Department of Geophysics, University of Chile, Santiago, Chile
3Department of Meteorology, University of Valparaiso, Valparaiso, Chile
4Interdisciplinary Center for Atmospheric and Astro-statistical Studies, University of Valparaiso, Valparaiso, Chile

Tóm tắt

AbstractA record‐setting temperature of 17.5°C occurred on 24 March 2015 at the Esperanza station located near the northern tip of the Antarctic Peninsula (AP). We studied the event using surface station data, satellite imagery, reanalysis data, and numerical simulations. The Moderate Resolution Imaging Spectroradiometer Antarctic Ice Shelf Image Archive provides clear evidence for disintegration and advection of sea ice, as well as the formation of melt ponds on the ice sheet surface at the base of the AP mountain range. A deep low‐pressure center over the Amundsen‐Bellingshausen Sea and a blocking ridge over the southeast Pacific provided favorable conditions for the development of an atmospheric river with a northwest‐southeast orientation, directing warm and moist air toward the AP, and triggering a widespread foehn episode. A control simulation using a regional climate model shows the existence of local topographically induced warming along the northern tip of the AP (∼60% of the full temperature signal) and the central part of the eastern AP (>90% of the full temperature signal) with respect to a simulation without topography. These modeling results suggest that more than half of the warming experienced at Esperanza can be attributed to the foehn effect (a local process), rather than to the large‐scale advection of warm air from the midlatitudes. Nevertheless, the local foehn effect also has a large‐scale advection component, since the atmospheric river provides water vapor for orographic precipitation enhancement and latent heat release, which makes it difficult to completely disentangle the role of local versus large‐scale processes in explaining the extreme event.

Từ khóa


Tài liệu tham khảo

American Meteorological Society(2017).Atmospheric river American Meteorological Society. Retrieved fromhttp://glossary.ametsoc.org/wiki/Atmospheric_river

10.1175/1520-0493(1977)105<0270:ACPSUA>2.0.CO;2

10.1002/2016JF004047

10.1002/2016JD024835

10.1016/j.rse.2008.07.006

10.1175/MWR-D-16-0041.1

10.1002/j.1477-8696.1971.tb04200.x

10.1002/2013JC009441

10.1002/2015JD023465

10.4236/acs.2013.33029

10.1016/j.quascirev.2014.06.023

Convey P., 2006, Responses of terrestrial Antarctic ecosystems to climate change, Plant Ecology, 182, 1

10.5194/tc-4-77-2010

10.1126/science.1104235

10.1002/qj.828

10.3390/w3020445

1993 Boulder NCAR R. E. Dickinson A. Henderson‐Sellers P. J. Kennedy Biosphere‐atmosphere transfer scheme (BATS) Version 1e as coupled to the NCAR Community Climate Model

10.1175/BAMS-D-14-00194.1

10.1002/qj.2489

10.1002/qj.2382

10.1175/1520-0469(1991)048<2313:ASFRCC>2.0.CO;2

ETOPO2v2, 2006, 2‐minute gridded global relief data

10.3389/feart.2014.00002

10.1175/1520-0493(1993)121<2794:DOASGR>2.0.CO;2

10.1175/1520-0493(1993)121<2814:DOASGR>2.0.CO;2

10.3354/cr01018

10.1038/ngeo2761

10.1002/2014GL060881

10.1175/JCLI-D-12-00697.1

10.1175/1520-0493(1993)121<0764:PEOAUB>2.0.CO;2

1994 NCAR Boulder CO G. A. Grell J. Dudhia D. R. Stauffer Description of the fifth generation Penn State/NCAR Mesoscale Model (MM5)

10.1175/1520-0493(1990)118<1561:AHRAMT>2.0.CO;2

Hong S. Y., 2006, The WRF single‐moment 6‐class microphysics scheme (WSM6), Journal of the Korean Meteorological Society, 42, 129

1996 NCAR Boulder CO J. T. Kiehl J. J. Hack G. B. Bonan B. A. Boville B. P. Breigleb D. Williamson Description of the NCAR Community Climate Model (CCM3)

King J. C., 2009, Antarctic meteorology and climatology

10.1127/0941-2948/2011/0221

10.1175/1520-0442(2001)014<0001:SHACRT>2.0.CO;2

Main J. S., 2004, The Kain‐Fritsch convective parameterization: An update, Journal of Applied Meteorology and Climatology, 43, 170, 10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2

10.1175/JCLI3844.1

10.1175/JTECH-D-11-00103.1

10.1029/97JD00237

10.1126/science.1164533

10.1007/s10546-005-9030-8

10.1038/ncomms15799

10.1016/j.scitotenv.2016.12.030

10.1175/BAMS-88-9-1395

10.1029/2000JD900415

10.1029/2006JF000597

10.1175/1520-0493(2004)132<1721:SACAOO>2.0.CO;2

10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2

10.1029/2004GL020697

Scambos T. Bohlander J. &Raup B.(1996).Images of Antarctic Ice Shelves Larsen B Ice Shelf National Snow and Ice Data Center. Retrieved fromhttps://nsidc.org/data/iceshelves_images/index_modis.html

10.1029/2004GL020670

10.1029/2009JD013410

10.1126/science.1185779

10.1029/2004GL020724

2008 NCAR Boulder CO W. C. Skamarock J. B. Klemp J. Dudhia D. O. Gill D. M. Barker M. G. Duda A description of the advanced research WRF version 3

Skansi M. L. M., 2017, Evaluating highest‐temperature extremes in the Antarctic, EOS, 98

10.1002/joc.3481

10.1175/2010JCLI3382.1

10.1038/nature18645

10.1002/grl.50560

10.3189/2014JoG14J051

10.1175/JCLI-D-15-0060.1

10.1175/2010JHM1284.1

10.1126/science.aan7087

10.1038/ngeo2894

10.1175/1520-0442(1998)011<2628:IOBAAF>2.0.CO;2