Foam Stability of Mucin – Caseinate Mixtures: Relevance to Oral Processing
Tóm tắt
This work studies saliva foam, and the effect of in vitro orally-processed model foods on this foamy state. It reaches an estimation on the volume fraction of air trapped as bubbles in the saliva of healthy young volunteers, a value close to 0.3. So air bubbles and foam state might be intrinsic colloidal properties of saliva, with implications on its physiological and physicochemical definition and role. It then studies the capacity of mucin to stabilize model saliva, and the role of food protein (here sodium caseinate) to influence this foaming and the resulting foam stability during oral processing in in vitro systems. Synergistic effects are observed between mucin and caseinate in foams in terms of their foaming capacity and foaming stability. These are discussed in relation to their water–air dynamic interfacial tension, while the bubbles are observed with confocal microscopy. The effects of replacement of mucin with caseinate, hence the relevant transitions in interfacial composition, are studied in high internal gas volume fraction foams, with sodium caseinate producing relatively thicker foams, and mucin bringing about higher long-term stability. The above are brought together and discussed in relation to the temporal evolution of foam during the oral processing of foods.
Tài liệu tham khảo
J. Cichero, Nutr. J. 12(1), 54 (2013)
J. Ship, J. Physiol. Behav. 66, 209 (1999)
J.M. Brunstrom, P.M. Tribbeck, A.W. McRae, Phys. Behav. 68, 579 (2000)
E. Neyraud, J. Prinz, E. Dransfield, Phys. Behav. 79(4-5), 731–737 (2003)
A.C. Mosca, J. Chen, J. Trends Food Sci. Tech. 66, 125–134 (2017)
P.O. Glantz, Collloid. Surf. A 657, 123–124 (1997)
M.B. Grufferty, D.M. Mulvihill, Int. J. Dairy Tech. 44(1), 13–19 (1991)
S.-Y. Lee, C.V. Morr, E.Y.W. Ha, Food Sci. 57, 1219 (1992)
J.M.R. Patino, N. Delgado, J.A. Linares Fernández, Colloid. Surf. B 99, 65 (1995)
T.A. Istarova, M.G. Semenova, G.M. Sorokoumova, A.A. Selishcheva, L.E. Belyakova, Y.N. Polikarpov, M.S. Anokhina, Food Hydrocolloid 19(3), 429–440 (2005)
S. Grizopoulou, M. Karagiorgou, V. Karageorgiou, P. Shao, D. Petridis, C. Ritzoulis JAOCS 97(3), 243–252 (2020)
R. Morales, M.J. Martinez, A.M.R. Pilosof, Colloid. Surf. B 159, 501–508 (2017)
H.Y. Çelebioğlu, S. Lee, I.S. Chronakis, Crit. Rev. Food Sci. Nutr. 60(1), 64–83 (2020)
C. Ritzoulis, S. Siasios, K.D. Melikidou, C. Koukiotis, C. Vasiliadou, S. Lolakos, Food Hydrocolloid 29(2), 382–388 (2012)
M. Minekus, M. Alminger, P. Alvito, S. Ballance, T. Bohn, C. Bourlieu, F. Carrière, R. Boutrou, M. Corredig, D. Dupont, C. Dufour, L. Egger, M. Golding, S. Karakaya, B. Kirkhus, S. Le Feunteun, U. Lesmes, A. Macierzanka, A. Mackie, S. Marze, D.J. McClements, O. Ménard, I. Recio, C.N. Santos, R.P. Singh, G.E. Vegarud, M.S. Wickham, W. Weitschies, A. Brodkorb Food Funct. 5, 1113 (2014)
C. Ritzoulis, An introduction to the physical chemistry of food (CRC Press, Boca Raton, 2013)
D.M. Abascal, J. Gracia-Fadrique, Food Hydrocolloid 23(7), 1848–1852 (2009)
X. Zhu, F. Zhan, Y. Zhao, Y. Han, X. Chen, B. Li, Food Hydrocolloid. 105, 105758 (2020)
Y. Li, Y. Li, D. Yuan, Y. Wang, M. Li, L. Zhang, Int. Dairy J. 105, 104658 (2020)
M. Avgidou, M. Dimopoulou, A.R. Mackie, N. Rigby, C. Ritzoulis, C. Panayiotou, RSC Adv. 6(104), 102634–102646 (2016)
S. Lousinian, A.R. Mackie, N.M. Rigby, C. Panayiotou, C. Ritzoulis, Int. J. Biol. Macromol. 112, 555–560 (2018)
C. Carrera Sánchez, J.M. Rodríguez Patino, Food Hydrocolloid. 19(3), 407–416 (2005)
F. Zhan, J. Li, M. Shi, D. Wu, B. Li, J. Agric. Food Chem. 67(8), 2340–2349 (2019)
L.K. Hassan, A.B. Shazly, M.A. El-Aziz, T.N. Soliman, Int. J. Dairy Sci. 15, 62 (2020)
D.J. Walsh, K. Russell, R.J. FitzGerald, Food Res. Int. 41, 43 (2008)
Z. Wang, G. Narsimhan, J Colloid Int Sci 280, 224 (2004)
M. Glumac, L. Qin, J. Chen, C. Ritzoulis, J. Texture Stud. 50(1), 83–89 (2019)