Fluorescence Correlation Spectroscopy Measures Molecular Transport in Cells

Traffic - Tập 2 Số 11 - Trang 789-796 - 2001
Elliot L. Elson1
1Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA

Tóm tắt

Fluorescence correlation spectroscopy (FCS) can measure dynamics of fluorescent molecules in cells. FCS measures the fluctuations in the number of fluorescent molecules in a small volume illuminated by a thin beam of excitation light. These fluctuations are processed statistically to yield an autocorrelation function from which rates of diffusion, convection, chemical reaction, and other processes can be extracted. The advantages of this approach include the ability to measure the mobility of a very small number of molecules, even down to the single molecule level, over a wide range of rates in very small regions of a cell. In addition to rates of diffusion and convection, FCS also provides unique information about the local concentration, states of aggregation and molecular interaction using fluctuation amplitude and cross‐correlation methods. Recent advances in technology have rendered these once difficult measurements accessible to routine use in cell biology and biochemistry. This review provides a summary of the FCS method and describes current areas in which the FCS approach is being extended beyond its original scope.

Từ khóa


Tài liệu tham khảo

10.1073/pnas.91.13.5740

10.1073/pnas.94.22.11753

10.1002/bip.1974.360130102

10.1103/PhysRevLett.29.705

10.1021/j100036a009

10.1016/0005-2736(74)90085-6

10.1016/0005-2736(76)90189-9

10.1126/science.1246629

10.1073/pnas.73.12.4594

10.1146/annurev.pc.36.100185.002115

10.1016/S0006-3495(76)85776-1

10.1146/annurev.ph.49.030187.001115

10.1073/pnas.84.14.4910

10.1038/35073068

Widengren J, 1998, Fluorescence correlation spectroscopy as a tool to investigate chemical reactions in solutions and on cell surfaces, Cell Mol Biol (Noisy-le-grand), 44, 857

10.1016/0168-1656(95)00054-T

10.1002/(sici)1097-0320(19990701)36:3[#60]176::aid-cyto5[#62]3.3.co]2-6

10.1007/978-3-642-59542-4

10.1007/978-3-642-59542-4_15

10.1073/pnas.72.8.3111

10.1038/247438a0

Gross DJ, 1988, Cell Surface Clustering and Mobility of the Ligand LDL Receptor Measured by Digital Fluorescence Microscopy

10.1083/jcb.112.1.111

10.1038/340284a0

10.1083/jcb.129.6.1559

10.1016/S0006-3495(98)77787-2

10.1016/S0006-3495(96)79846-6

10.1016/S0006-3495(96)79682-0

10.1016/S0006-3495(94)80789-1

10.1016/S0006-3495(98)77545-9

10.1006/jmbi.2000.3692

10.1016/S0301-4622(99)00031-9

10.1016/S0006-3495(00)76561-1

10.1083/jcb.106.6.1911

10.1002/bip.1978.360170208

10.1364/AO.30.001185

10.1016/S0006-3495(76)85755-4

10.1002/bip.360220808

10.1002/bip.1974.360130103

10.1073/pnas.93.13.6710

10.1007/978-3-642-59542-4_6

10.1126/science.287.5458.1652

10.1073/pnas.73.8.2776

Qian H, 1989, Characterization of the equilibrium distribution of polymer molecular weights by fluorescence distribution spectroscopy (theoretical results), Appl Polym Symposium, 43, 305

10.1073/pnas.96.24.13756

Muller JD, 2001, Fluorescence Correlation Spectroscopy, Theory and Applications, 410437

10.1016/S0006-3495(99)76912-2

10.1016/S0006-3495(00)76610-0

10.1016/S0006-3495(00)76722-1

10.1016/S0006-3495(00)76523-4

10.1016/S0006-3495(87)83213-7

Thompson NL, 2001, Fluorescence Correlation Spectroscopy, Theory and Applications, 438

10.1073/pnas.87.14.5479

10.1016/S0006-3495(90)82539-X

10.1016/S0006-3495(86)83709-2

10.1016/S0006-3495(93)81173-1

10.1016/S0006-3495(98)77699-4

10.1007/978-3-642-59542-4_7

10.1096/fasebj.8.11.8070629

10.1126/science.2321027

10.1016/S0006-3495(95)80230-4

10.1016/S0006-3495(99)77065-7

10.1073/pnas.95.4.1416

10.1016/S0006-3495(97)78833-7

10.1007/978-3-642-59542-4_17

10.1073/pnas.180317197

10.1007/978-3-642-59542-4_22

10.1021/jp000100r