Mô hình tương tác chất lỏng - cấu trúc của các tuabin gió: mô phỏng toàn bộ máy

Computational Mechanics - Tập 50 - Trang 821-833 - 2012
Ming-Chen Hsu1, Yuri Bazilevs1
1Department of Structural Engineering, University of California-San Diego, La Jolla, USA

Tóm tắt

Trong bài báo này, chúng tôi trình bày các kỹ thuật tính toán về khí động học và tương tác chất lỏng - cấu trúc (FSI) cho phép mô phỏng FSI 3D hoàn toàn liên kết động của các tuabin gió ở quy mô đầy đủ, và trong sự hiện diện của khoang máy và tháp (tức là, mô phỏng 'toàn bộ máy'). Đối với sự tương tác giữa gió và các cánh quạt linh hoạt, chúng tôi áp dụng phương pháp phân discret hóa không trùng khớp, trong đó khí động học được tính toán bằng phương pháp ALE-VMS dựa trên phần tử hữu hạn bậc thấp, trong khi các cánh quạt rotor được mô hình hóa như những vỏ composite mỏng được discret hóa bằng phân tích hình học đồng nhất dựa trên NURBS (IGA). Chúng tôi nhận thấy rằng việc kết hợp FEM và IGA theo cách này mang lại sự kết hợp tốt giữa hiệu quả, độ chính xác và tính linh hoạt của các quy trình tính toán cho FSI tuabin gió. Tương tác giữa rotor và tháp được xử lý bằng cách tiếp cận giao diện trượt không chồng lấp, nơi cả hai dạng khí động học cho miền chuyển động và miền tĩnh đều được sử dụng. Tại các giao diện chất lỏng - cấu trúc và giao diện trượt, tính liên tục động học và kéo được thi hành yếu, điều này là một thành phần chính của phương pháp số đề xuất. Chúng tôi trình bày một số mô phỏng của tuabin gió ba cánh có công suất 5~MW, với và không có tháp. Chúng tôi nhận thấy rằng, trong trường hợp không có tháp, sự hiện diện của giao diện trượt không ảnh hưởng đến dự đoán sức tải khí động học trên rotor. Từ điều này, chúng tôi kết luận rằng việc thi hành yếu của động học mang lại kết quả chính xác như thi hành mạnh, và do đó cho phép mô phỏng tương tác giữa rotor và tháp (cũng như các ứng dụng khác liên quan đến các thành phần cơ khí trong chuyển động tương đối). Chúng tôi cũng phát hiện rằng cánh quạt đi qua tháp tạo ra sự sụt giảm 10–12% (mỗi cánh) về mômen khí động học. Chúng tôi cảm thấy phát hiện này có thể quan trọng khi thực hiện phân tích và dự đoán tuổi thọ mỏi cho các cánh quạt tuabin gió.

Từ khóa

#tương tác chất lỏng - cấu trúc #mô phỏng tuabin gió #khí động học #FEM #IGA

Tài liệu tham khảo

Jonkman JM, Buhl ML Jr (2005) FAST user’s guide. Technical report NREL/EL-500-38230. National Renewable Energy Laboratory, Golden Jonkman J, Butterfield S, Musial W, Scott G (2009) Definition of a 5-MW reference wind turbine for offshore system development. Technical Report NREL/TP-500-38060. National Renewable Energy Laboratory, Golden,CO Sørensen NN, Michelsen JA, Schreck S (2002) Navier–Stokes predictions of the NREL phase VI rotor in the NASA Ames 80 ft × 120 ft wind tunnel. Wind Energy 5: 151–169 Duque EPN, Burklund MD, Johnson W (2003) Navier–Stokes and comprehensive analysis performance predictions of the NREL Phase VI experiment. J Solar Energy Eng 125: 457–467 Le Pape A, Lecanu J (2004) 3D Navier–Stokes computations of a stall-regulated wind turbine. Wind Energy 7: 309–324 Chao DD van~Dam CP (2007) Computational aerodynamic analysis of a blunt trailing-edge airfoil modification to the NREL Phase VI rotor. Wind Energy 10: 529–550 Gómez-Iradi S, Steijl R, Barakos GN (2009) Development and validation of a CFD technique for the aerodynamic analysis of HAWT. J Solar Energy Eng 131:031009-1-13 Zahle F, Sørensen NN, Johansen J (2009) Wind turbine rotor-tower interaction using an incompressible overset grid method. Wind Energy 12: 594–619 Bazilevs Y, Hsu MC, Akkerman I, Wright S, Takizawa K, Henicke B, Spielman T, Tezduyar TE (2011) 3D simulation of wind turbine rotors at full scale. Part I: Geometry modeling and aerodynamics. Int J Num Methods Fluids 65: 207–235 Takizawa K, Henicke B, Tezduyar TE, Hsu MC, Bazilevs Y (2011) Stabilized space–time computation of wind-turbine rotor aerodynamics. Comput Mech 48: 333–344 Takizawa K, Henicke B, Montes D, Tezduyar TE, Hsu M-C, Bazilevs Y (2011) Numerical-performance studies for the stabilized space–time computation of wind-turbine rotor aerodynamics. Comput Mech 48: 647–657 Bechmann A, Sørensen NN, Zahle F (2011) CFD simulations of the MEXICO rotor. Wind Energy 14: 677–689 Li Y, Carrica PM, Paik KJ, Xing T (2012) Dynamic overset CFD simulations of wind turbine aerodynamics. Renew Energy 37: 285–298 Sørensen NN, Schreck S (2012) Computation of the national renewable energy laboratory phase-VI rotor in pitch motion during standstill. Wind Energy. doi:10.1002/we.480 Scheurich F, Brown RE (2012) Modelling the aerodynamics of vertical-axis wind turbines in unsteady wind conditions. Wind Energy. doi:10.1002/we.532 Chow R, van~Dam CP (2012) Verification of computational simulations of the NREL 5 MW rotor with a focus on inboard flow separation. Wind Energy. doi:10.1002/we.529. Kong C, Bang J, Sugiyama Y (2005) Structural investigation of composite wind turbine blade considering various load cases and fatigue life. Energy 30: 2101–2114 Lund E, Stegmann J (2005) On structural optimization of composite shell structures using a discrete constitutive parametrization. Wind Energy 8: 109–124 Hansen MOL, Sørensen JN, Voutsinas S, Sørensen N, Madsen Aa H (2006) State of the art in wind turbine aerodynamics and aeroelasticity. Prog Aerosp Sci 42: 285–330 Jensen FM, Falzon BG, Ankersen J, Stang H (2006) Structural testing and numerical simulation of a 34 m composite wind turbine blade. Compos Struct 76: 52–61 Kiendl J, Bazilevs Y, Hsu M-C, Wüchner R, Bletzinger K-U (2010) The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches. Comput Methods Appl Mech Eng 199: 2403–2416 Bazilevs Y, Hsu M-C, Kiendl J, Benson DJ (2012) A computational procedure for prebending of wind turbine blades. Int J Num Methods Eng 89: 323–336 Cárdenas D, Escárpita AA, Elizalde H, Aguirre JJ, Marzocca P, Ahuett H, Probst O (2012) Numerical validation of a finite element thin-walled beam model of a composite wind turbine blade. Wind Energy 15: 203–223 Hsu M-C, Akkerman I, Bazilevs Y (2012) Finite element simulation of wind turbine aerodynamics: validation study using NREL Phase VI experiment. Wind Energy (In review) Bazilevs Y, Hsu M-C, Kiendl J, Wüchner R, Bletzinger K-U (2011) 3D simulation of wind turbine rotors at full scale. Part II: Fluid–structure interaction modeling with composite blades. Int J Num Methods Fluids 65: 236–253 Bazilevs Y, Hughes TJR (2008) NURBS-based isogeometric analysis for the computation of flows about rotating components. Comput Mech 43: 143–150 Tezduyar T, Aliabadi S, Behr M, Johnson A, Kalro V, Litke M (1996) Flow simulation and high performance computing. Comput Mech 18: 397–412 Behr M, Tezduyar T (1999) The shear-slip mesh update method. Comput Methods Appl Mech Eng 174: 261–274 Behr M, Tezduyar T (2001) Shear-slip mesh update in 3D computation of complex flow problems with rotating mechanical components. Comput Methods Appl Mech Eng 190: 3189–3200 Tezduyar TE (2001) Finite element methods for flow problems with moving boundaries and interfaces. Arch Comput Methods Eng 8: 83–130 Tezduyar TE (2007) Finite elements in fluids: special methods and enhanced solution techniques. Comput Fluids 36: 207–223 Bazilevs Y, Hsu MC, Scott MA (2012) Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines. Comput Methods Appl Mech Eng. doi:10.1016/j.cma.2012.03.028 Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD finite elements, NURBS exact geometry, and mesh refinement. Comput Methods Appl Mech Eng 194: 4135–4195 Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, Chichester Tezduyar TE, Sathe S, Pausewang J, Schwaab M, Christopher J, Crabtree J (2008) Interface projection techniques for fluid–structure interaction modeling with moving-mesh methods. Comput Mech 43: 39–49 Tezduyar TE, Sathe S, Pausewang J, Schwaab M, Christopher J, Crabtree J (2008) Fluid–structure interaction modeling of ringsail parachutes. Comput Mech 43: 133–142 Takizawa K, Moorman C, Wright S, Spielman T, Tezduyar TE (2011) Fluid–structure interaction modeling and performance analysis of the Orion spacecraft parachutes. Int J Num Methods Fluids 65: 271–285 Takizawa K, Wright S, Moorman C, Tezduyar TE (2011) Fluid–structure interaction modeling of parachute clusters. Int J Num Methods Fluids 65: 286–307 Takizawa K, Spielman T, Tezduyar TE (2011) Space–time FSI modeling and dynamical analysis of spacecraft parachutes and parachute clusters. Comput Mech 48: 345–364 Takizawa K, Tezduyar TE (2012) Computational methods for parachute fluid–structure interactions. Arch Comput Methods Eng 19: 125–169 Bazilevs Y, Hsu M-C, Takizawa K, Tezduyar TE (2012) ALE–VMS and ST–VMS methods for computer modeling of wind-turbine rotor aerodynamics and fluid–structure interaction. Math Models Methods Appl Sci. doi:10.1142/S0218202512300025 Takizawa K, Bazilevs Y, Tezduyar TE (2012) Space–time and ALE-VMS techniques for patient-specific cardiovascular fluid–structure interaction modeling. Arch Comput Methods Eng 19: 171–225 Bazilevs Y, Hughes TJR (2007) Weak imposition of Dirichlet boundary conditions in fluid mechanics. Comput Fluids 36: 12–26 Hsu M-C, Akkerman I, Bazilevs Y (2012) Wind turbine aerodynamics using ALE–VMS: validation and the role of weakly enforced boundary conditions. Comput Mech. doi:10.1007/s00466-012-0686-x Kiendl J, Bletzinger K-U, Linhard J, Wüchner R (2009) Isogeometric shell analysis with Kirchhoff–Love elements. Comput Methods Appl Mech Eng 198: 3902–3914 Nitsche J (1971) Uber ein variationsprinzip zur losung von Dirichlet-problemen bei verwendung von teilraumen, die keinen randbedingungen unterworfen sind. Abh Math Univ Hamburg 36: 9–15 Hansbo P, Hermansson J (2004) Nitsche’s method for coupling non-matching meshes in fluid-structure vibrational problems. Comput Mech 32: 134–139 Arnold DN, Brezzi F, Cockburn B, Marini LD (2002) Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J Num Anal 39: 1749–1779 Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric fluid–structure interaction analysis with applications to arterial blood flow. Comput Mech 38: 310–322 Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid–structure interaction: theory, algorithms, and computations. Comput Mech 43: 3–37 Bazilevs Y, Gohean JR, Hughes TJR, Moser RD, Zhang Y (2009) Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device. Comput Methods Appl Mech Eng 198: 3534–3550 Bazilevs Y, Hsu M-C, Benson D, Sankaran S, Marsden A (2009) Computational fluid–structure interaction: methods and application to a total cavopulmonary connection. Comput Mech 45: 77–89 Bazilevs Y, Hsu MC, Zhang Y, Wang W, Liang X, Kvamsdal T, Brekken R, Isaksen J (2010) A fully-coupled fluid–structure interaction simulation of cerebral aneurysms. Comput Mech 46: 3–16 Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Kvamsdal T, Hentschel S, Isaksen J (2010) Computational fluid–structure interaction: methods and application to cerebral aneurysms. Biomech Model Mechanobiol 9: 481–498 Zhang Y, Wang W, Liang X, Bazilevs Y, Hsu M-C, Kvamsdal T, Brekken R, Isaksen JG (2009) High-fidelity tetrahedral mesh generation from medical imaging data for fluid–structure interaction analysis of cerebral aneurysms. Comput Model Eng Sci 42: 131–150 Hsu M-C, Bazilevs Y (2011) Blood vessel tissue prestress modeling for vascular fluid–structure interaction simulations. Finite Elem Anal Des 47: 593–599 Long CC, Hsu M-C, Bazilevs Y, Feinstein JA, Marsden AL (2012) Fluid–structure interaction simulations of the Fontan procedure using variable wall properties. Int J Num Methods Biomed Eng 28: 512–527 Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 32: 199–259 Hughes TJR, Tezduyar TE (1984) Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations. Comput Methods Appl Mech Eng 45: 217–284 Tezduyar TE, Park YJ (1986) Discontinuity capturing finite element formulations for nonlinear convection-diffusion-reaction equations. Comput Methods Appl Mech Eng 59: 307–325 Hughes TJR, Franca LP, Balestra M (1986) A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuška–Brezzi condition: a stable Petrov–Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Comput Methods Appl Mech Eng 59: 85–99 Tezduyar TE, Osawa Y (2000) Finite element stabilization parameters computed from element matrices and vectors. Comput Methods Appl Mech Eng 190: 411–430 Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Num Methods Fluids 43: 555–575 Hughes TJR, Scovazzi G, Franca LP (2004) Multiscale and stabilized methods. In Stein E, de~Borst R, Hughes TJR, (eds) Encyclopedia of computational mechanics, vol 3, Fluids ch 2. Wiley, Weinheim Tezduyar TE, Sathe S (2007) Modeling of fluid–structure interactions with the space–time finite elements: solution techniques. Int J Num Methods Fluids 54: 855–900 Bazilevs Y, Calo VM, Cottrel JA, Hughes TJR, Reali A, Scovazzi G (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng 197: 173–201 Hsu M-C, Bazilevs Y, Calo VM, Tezduyar TE, Hughes TJR (2010) Improving stability of stabilized and multiscale formulations in flow simulations at small time steps. Comput Methods Appl Mech Eng 199: 828–840 Bazilevs Y, Michler C, Calo VM, Hughes TJR (2007) Weak Dirichlet boundary conditions for wall-bounded turbulent flows. Comput Methods Appl Mech Eng 196: 4853–4862 Bazilevs Y, Michler C, Calo VM, Hughes TJR (2010) Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes. Comput Methods Appl Mech Eng 199: 780–790 Bazilevs Y, Akkerman I (2010) Large eddy simulation of turbulent Taylor–Couette flow using isogeometric analysis and the residual–based variational multiscale method. J Comput Phys 229: 3402–3414 Bazilevs Y, Calo VM, Cottrell JA, Evans JA, Hughes TJR, Lipton S, Scott MA, Sederberg TW (2010) Isogeometric analysis using T-splines. Comput Methods Appl Mech Eng 199: 229–263 Dö MR, Jü B, Simeon B (2010) Adaptive isogeometric analysis by local h-refinement with T-splines. Comput Methods Appl Mech Eng 199: 264–275 Cirak F, Ortiz M, Schrö P (2000) Subdivision surfaces: a new paradigm for thin shell analysis. Int J Num Methods Eng 47: 2039–2072 Cirak F, Ortiz M (2001) Fully C 1-conforming subdivision elements for finite defomation thin shell analysis. Int J Num Methods Eng 51: 813–833 Cirak F, Scott MJ, Antonsson EK, Ortiz M, Schrö P (2002) Integrated modeling, finite-element analysis, and engineering design for thin-shell structures using subdivision. Comput Aided Des 34: 137–148 Oñ E, Zarate F (2000) Rotation-free triangular plate and shell elements. International Journal for Numerical Methods in Engineering 47: 557–603 Oñ E, Flores FG (2005) Advances in the formulation of the rotation-free basic shell triangle. Comput Methods Appl Mech Eng 194: 2406–2443 Benson DJ, Bazilevs Y, Hsu M-C, Hughes TJR (2011) A large deformation, rotation-free, isogeometric shell. Comput Methods Appl Mech Eng 200: 1367–1378 Nguyen-Thanh N, Kiendl J, Nguyen-Xuan H, Wüchner R, Bletzinger KU, Bazilevs Y, Rabczuk T (2011) Rotation-free isogeometric thin shell analysis using PHT-splines. Comput Methods Appl Mech Eng 200: 3410–3424 Farhat C, Lesoinne M, Le Tallec P (1998) Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: momentum and energy conservation, optimal discretization and application to aeroelasticity. Comput Methods Appl Mech Eng 157: 95–114 Takizawa K, Tezduyar TE (2011) Multiscale space–time fluid–structure interaction techniques. Comput Mech 48: 247–267 Takizawa K Tezduyar TE (2012) Space–time fluid–structure interaction methods. Math Models Methods Appl Sc (To appear). doi:10.1142/S0218202512300013 Tezduyar TE, Sathe S, Stein K (2006) Solution techniques for the fully-discretized equations in computation of fluid–structure interactions with the space–time formulations. Comput Methods Appl Mech Eng 195: 5743–5753 Tezduyar TE, Sathe S, Keedy R, Stein K (2006) Space–time finite element techniques for computation of fluid–structure interactions. Comput Methods Appl Mech Eng 195: 2002–2027 Chung J, Hulbert GM (1993) A time integration algorithm for structural dynamics withimproved numerical dissipation: the generalized-α method. J Appl Mech 60: 371–375 Jansen KE, Whiting CH, Hulbert GM (2000) A generalized-α method for integrating the filtered Navier–Stokes equations with a stabilized finite element method. Comput Methods Appl Mech Eng 190: 305–319 Tezduyar TE, Behr M, Mittal S, Johnson AA (1992) Computation of unsteady incompressible flows with the finite element methods: space–time formulations, iterative strategies and massively parallel implementations. In New methods in transient analysis. PVP-vol 246/AMD-vol 143, pp 7–24, ASME, New York Tezduyar T, Aliabadi S, Behr M, Johnson A, Mittal S (1993) Parallel finite-element computation of 3D flows. Computer 26(10): 27–36 Johnson AA, Tezduyar TE (1994) Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Comput Methods Appl Mechanics Eng 119: 73–94 Jonkman JM (2009) Dynamics of offshore floating wind turbines: model development and verification. Wind Energy 12: 459–492 Jonkman JM, Matha D (2011) Dynamics of offshore floating wind turbines: analysis of three concepts. Wind Energy 14: 557–569 Lackner MA, Rotea MA (2011) Passive structural control of offshore wind turbines. Wind Energy 14: 373–388 Nicklasson PJ, Homola MC, Virk MS, Sundsbø PA (2012) Performance losses due to ice accretion for a 5 MW wind turbine. Wind Energy 15: 379–389 Chow R, van~Dam CP (2011) Verication of computational simulations of the NREL 5 MW rotor with a focus on inboard ow separation. Wind Energy. doi:10.1002/we.529 Lackner MA (2012) An investigation of variable power collective pitch control for load mitigation of floating offshore wind turbines. Wind Energy. doi:10.1002/we.1500 Sebastian T, Lackner MA (2012) Characterization of the unsteady aerodynamics of offshore floating wind turbines. Wind Energy. doi:10.1002/we.545 Hsu M-C, Akkerman I, Bazilevs Y (2011) High-performance computing of wind turbine aerodynamics using isogeometric analysis. Comput Fluids 49: 93–100 Hsu M-C (2012) Fluid–Structure Interaction Analysis of Wind Turbines PhD thesis. University of California, San Diego Hau E (2006) Wind turbines: fundamentals, technologies, application, economics, 2nd edn. Springer, Berlin