Flow mediated dilation of the brachial artery: an investigation of methods requiring further standardization
Tóm tắt
In order to establish a consistent method for brachial artery reactivity assessment, we analyzed commonly used approaches to the test and their effects on the magnitude and time-course of flow mediated dilation (FMD), and on test variability and repeatability. As a popular and noninvasive assessment of endothelial function, several different approaches have been employed to measure brachial artery reactivity with B-mode ultrasound. Despite some efforts, there remains a lack of defined normal values and large variability in measurement technique.
Twenty-six healthy volunteers underwent repeated brachial artery diameter measurements by B-mode ultrasound. Following baseline diameter recordings we assessed endothelium-dependent flow mediated dilation by inflating a blood pressure cuff either on the upper arm (proximal) or on the forearm (distal).
Thirty-seven measures were performed using proximal occlusion and 25 with distal occlusion. Following proximal occlusion relative to distal occlusion, FMD was larger (16.2 ± 1.2% vs. 7.3 ± 0.9%, p < 0.0001) and elongated (107.2 s vs. 67.8 s,
These findings suggest that forearm compression holds statistical advantages over upper arm compression. Added to documented physiological and practical reasons, we propose that future studies should use forearm compression in the assessment of endothelial function.
Từ khóa
Tài liệu tham khảo
Asselbergs FW, van der Harst P, Jessurun GA, Tio RA, van Gilst WH: Clinical impact of vasomotor function assessment and the role of ACE-inhibitors and statins. Vascul Pharmacol. 2005, 42 (3): 125-140. 10.1016/j.vph.2005.01.009.
Celermajer DS, Sorensen KE, Gooch VM, Spiegelhalter DJ, Miller OI, Sullivan ID, Lloyd JK, Deanfield JE: Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet. 1992, 340 (8828): 1111-1115. 10.1016/0140-6736(92)93147-F.
Kuvin JT, Patel AR, Sliney KA, Pandian NG, Rand WM, Udelson JE, Karas RH: Peripheral vascular endothelial function testing as a noninvasive indicator of coronary artery disease. J Am Coll Cardiol. 2001, 38 (7): 1843-1849. 10.1016/S0735-1097(01)01657-6.
Takase B, Uehata A, Akima T, Nagai T, Nishioka T, Hamabe A, Satomura K, Ohsuzu F, Kurita A: Endothelium-dependent flow-mediated vasodilation in coronary and brachial arteries in suspected coronary artery disease. Am J Cardiol. 1998, 82 (12): 1535-9, A7-8. 10.1016/S0002-9149(98)00702-4.
Kuvin JT, Patel AR, Karas RH: Need for standardization of noninvasive assessment of vascular endothelial function. Am Heart J. 2001, 141 (3): 327-328. 10.1067/mhj.2001.113221.
Roman MJ, Naqvi TZ, Gardin JM, Gerhard-Herman M, Jaff M, Mohler E: Clinical application of noninvasive vascular ultrasound in cardiovascular risk stratification: a report from the American Society of Echocardiography and the Society of Vascular Medicine and Biology. J Am Soc Echocardiogr. 2006, 19 (8): 943-954. 10.1016/j.echo.2006.04.020.
Corretti MC, Plotnick GD, Vogel RA: Technical aspects of evaluating brachial artery vasodilatation using high-frequency ultrasound. Am J Physiol. 1995, 268 (4 Pt 2): H1397-404.
Sonka M, Liang W, Lauer RM: Automated analysis of brachial ultrasound image sequences: early detection of cardiovascular disease via surrogates of endothelial function. IEEE Trans Med Imaging. 2002, 21 (10): 1271-1279. 10.1109/TMI.2002.806288.
Mancini GB, Yeoh E, Abbott D, Chan S: Validation of an automated method for assessing brachial artery endothelial dysfunction. Can J Cardiol. 2002, 18 (3): 259-262.
Preik M, Lauer T, Heiss C, Tabery S, Strauer BE, Kelm M: Automated ultrasonic measurement of human arteries for the determination of endothelial function. Ultraschall Med. 2000, 21 (5): 195-198. 10.1055/s-2000-7989.
Bland JM, Altman DG: Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986, 1 (8476): 307-310.
Anderson TJ, Uehata A, Gerhard MD, Meredith IT, Knab S, Delagrange D, Lieberman EH, Ganz P, Creager MA, Yeung AC, et al: Close relation of endothelial function in the human coronary and peripheral circulations. J Am Coll Cardiol. 1995, 26 (5): 1235-1241. 10.1016/0735-1097(95)00327-4.
Matsuo S, Matsumoto T, Takashima H, Ohira N, Yamane T, Yasuda Y, Tarutani Y, Horie M: The relationship between flow-mediated brachial artery vasodilation and coronary vasomotor responses to bradykinin: comparison with those to acetylcholine. J Cardiovasc Pharmacol. 2004, 44 (2): 164-170. 10.1097/00005344-200408000-00004.
Doshi SN, Naka KK, Payne N, Jones CJ, Ashton M, Lewis MJ, Goodfellow J: Flow-mediated dilatation following wrist and upper arm occlusion in humans: the contribution of nitric oxide. Clin Sci (Lond). 2001, 101 (6): 629-635.
Berry KL, Skyrme-Jones RA, Meredith IT: Occlusion cuff position is an important determinant of the time course and magnitude of human brachial artery flow-mediated dilation. Clin Sci (Lond). 2000, 99 (4): 261-267.
Betik AC, Luckham VB, Hughson RL: Flow-mediated dilation in human brachial artery after different circulatory occlusion conditions. Am J Physiol Heart Circ Physiol. 2004, 286 (1): H442-8. 10.1152/ajpheart.00314.2003.
Agewall S, Doughty RN, Bagg W, Whalley GA, Braatvedt G, Sharpe N: Comparison of ultrasound assessment of flow-mediated dilatation in the radial and brachial artery with upper and forearm cuff positions. Clin Physiol. 2001, 21 (1): 9-14. 10.1046/j.1365-2281.2001.00302.x.
Bots ML, Westerink J, Rabelink TJ, de Koning EJ: Assessment of flow-mediated vasodilatation (FMD) of the brachial artery: effects of technical aspects of the FMD measurement on the FMD response. Eur Heart J. 2005, 26 (4): 363-368. 10.1093/eurheartj/ehi017.
Mannion TC, Vita JA, Keaney JF, Benjamin EJ, Hunter L, Polak JF: Non-invasive assessment of brachial artery endothelial vasomotor function: the effect of cuff position on level of discomfort and vasomotor responses. Vasc Med. 1998, 3 (4): 263-267.
Vogel RA, Corretti MC, Plotnick GD: A comparison of brachial artery flow-mediated vasodilation using upper and lower arm arterial occlusion in subjects with and without coronary risk factors. Clin Cardiol. 2000, 23 (8): 571-575.
Pyke KE, Tschakovsky ME: The relationship between shear stress and flow-mediated dilatation: implications for the assessment of endothelial function. J Physiol. 2005, 568 (Pt 2): 357-369. 10.1113/jphysiol.2005.089755.
Corretti MC, Anderson TJ, Benjamin EJ, Celermajer D, Charbonneau F, Creager MA, Deanfield J, Drexler H, Gerhard-Herman M, Herrington D, Vallance P, Vita J, Vogel R: Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: a report of the International Brachial Artery Reactivity Task Force. J Am Coll Cardiol. 2002, 39 (2): 257-265. 10.1016/S0735-1097(01)01746-6.
Tschakovsky ME, Pyke KE: Counterpoint: Flow-mediated dilation does not reflect nitric oxide-mediated endothelial function. J Appl Physiol. 2005, 99 (3): 1235-7; discussion 1237-8. 10.1152/japplphysiol.00607.2005.
Joannides R, Haefeli WE, Linder L, Richard V, Bakkali EH, Thuillez C, Luscher TF: Nitric oxide is responsible for flow-dependent dilatation of human peripheral conduit arteries in vivo. Circulation. 1995, 91 (5): 1314-1319.
Lieberman EH, Gerhard MD, Uehata A, Selwyn AP, Ganz P, Yeung AC, Creager MA: Flow-induced vasodilation of the human brachial artery is impaired in patients <40 years of age with coronary artery disease. Am J Cardiol. 1996, 78 (11): 1210-1214. 10.1016/S0002-9149(96)00597-8.
West SG, Wagner P, Schoemer SL, Hecker KD, Hurston KL, Likos Krick A, Boseska L, Ulbrecht J, Hinderliter AL: Biological correlates of day-to-day variation in flow-mediated dilation in individuals with Type 2 diabetes: a study of test-retest reliability. Diabetologia. 2004, 47 (9): 1625-1631. 10.1007/s00125-004-1502-8.
Moens AL, Goovaerts I, Claeys MJ, Vrints CJ: Flow-mediated vasodilation: a diagnostic instrument, or an experimental tool?. Chest. 2005, 127 (6): 2254-2263. 10.1378/chest.127.6.2254.
Uehata A, Lieberman EH, Gerhard MD, Anderson TJ, Ganz P, Polak JF, Creager MA, Yeung AC: Noninvasive assessment of endothelium-dependent flow-mediated dilation of the brachial artery. Vasc Med. 1997, 2 (2): 87-92.
Hijmering ML, Stroes ES, Pasterkamp G, Sierevogel M, Banga JD, Rabelink TJ: Variability of flow mediated dilation: consequences for clinical application. Atherosclerosis. 2001, 157 (2): 369-373. 10.1016/S0021-9150(00)00748-6.
Pyke KE, Tschakovsky ME: Peak vs. total reactive hyperemia: which determines the magnitude of flow mediated dilation?. J Appl Physiol. 2006
Malik J, Wichterle D, Haas T, Melenovsky V, Simek J, Stulc T: Repeatability of noninvasive surrogates of endothelial function. Am J Cardiol. 2004, 94 (5): 693-696. 10.1016/j.amjcard.2004.05.049.
Welsch MA, Allen JD, Geaghan JP: Stability and reproducibility of brachial artery flow-mediated dilation. Med Sci Sports Exerc. 2002, 34 (6): 960-965. 10.1097/00005768-200206000-00009.