Flexoelectricity: A Perspective on an Unusual Electromechanical Coupling

Sana Krichen1, Pradeep Sharma1
1Department of Mechanical Engineering University of Houston, Houston, TX 77204

Tóm tắt

The ability of certain materials to convert electrical stimuli into mechanical deformation, and vice versa, is a prized property. Not surprisingly, applications of such so-called piezoelectric materials are broad—ranging from energy harvesting to self-powered sensors. In this perspective, written in the form of question-answers, we highlight a relatively understudied electromechanical coupling called flexoelectricity that appears to have tantalizing implications in topics ranging from biophysics to the design of next-generation multifunctional nanomaterials.

Từ khóa


Tài liệu tham khảo

2005, Crystal Properties Via Group Theory

1986, Piezoelectricity and Flexoelectricity in Crystalline Dielectrics, Phys. Rev. B, 34, 5883, 10.1103/PhysRevB.34.5883

2006, Electromechanical Coupling in Nonpiezoelectric Materials Due to Nanoscale Nonlocal Size Effects: Green's Function Solutions and Embedded Inclusions, Phys. Rev. B, 74, 014110, 10.1103/PhysRevB.74.014110

2006, Flexoelectric Effects: Charge Separation in Insulating Solids Subjected to Elastic Strain Gradients, J. Mater. Sci., 41, 53, 10.1007/s10853-005-5916-6

2009, Novel Electromechanical Phenomena at the Nanoscale: Phenomenological Theory and Atomistic Modeling, MRS Bull., 34, 643, 10.1557/mrs2009.175

2013, Flexoelectric Effect in Solids, Annu. Rev. Mater. Res., 43, 387, 10.1146/annurev-matsci-071312-121634

2013, Fundamentals of Flexoelectricity in Solids, Nanotechnology, 24, 432001, 10.1088/0957-4484/24/43/432001

2013, Nanoscale Flexoelectricity, Adv. Mater., 25, 946, 10.1002/adma.201203852

2013, Flexoelectricity in Two-Dimensional Crystalline and Biological Membranes, Nanoscale, 25, 946, 10.1039/C5NR04722F

2002, Curvature-Induced Polarization in Carbon Nanoshells, Chem. Phys. Lett., 360, 182, 10.1016/S0009-2614(02)00820-5

2012, Coaxing Graphene to be Piezoelectric, Appl. Phys. Lett., 100, 023114, 10.1063/1.3676084

2008, Electronic Flexoelectricity in Low-Dimensional Systems, Phys. Rev. B, 77, 033403, 10.1103/PhysRevB.77.033403

2014, Anomalous Piezoelectricity in Two-Dimensional Graphene Nitride Nano Sheets, Nat. Commun., 5, 4284, 10.1038/ncomms5284

2009, Unusual Flexoelectric Effect in Two-Dimensional Noncentrosymmetric sp2-Bonded Crystals, Phys. Rev. Lett., 102, 217601, 10.1103/PhysRevLett.102.217601

2013, Flexural Electromechanical Coupling: A Nanoscale Emergent Property of Boron Nitride Bilayers, Nano Lett., 13, 1681, 10.1021/nl4001635

2002, Flexoelectricity of Model and Living Membranes, Biochim. Biophys. Acta, 1561, 1, 10.1016/S0304-4157(01)00007-7

2006, Experimental Studies of the Converse Flexoelectric Effect Induced by Inhomogeneous Electric Field in a Barium Strontium Titanate Composition, J. Appl. Phys., 100, 024112, 10.1063/1.2219990

2007, Gradient Scaling Phenomenon in Microsize Flexoelectric Piezoelectric Composites, Appl. Phys. Lett., 91, 182910, 10.1063/1.2800794

2002, Flexoelectric Polarization of Barium Strontium Titanate in the Paraelectric State, Appl. Phys. Lett., 81, 3440, 10.1063/1.1518559

2007, Strain-Gradient Induced Polarization in SrTiO3 Single Crystals, Phys. Rev. Lett., 99, 167601, 10.1103/PhysRevLett.99.167601

2003, Strain-Gradient Induced Electric Polarization in Lead Zirconate Titanate Ceramics, Appl. Phys. Lett., 82, 3923, 10.1063/1.1570517

2012, Flexoelectricity in Several Thermoplastic and Thermosetting Polymers, Appl. Phys. Lett., 101, 103905, 10.1063/1.4750064

2011, Experimental Studies on the Direct Flexoelectric Effect in α-Phase Polyvinylidene Fluoride Films, Appl. Phys. Lett., 98, 242901, 10.1063/1.3599520

2012, Strain Gradient Induced Electric Polarization in α-Phase Polyvinylidene Fluoride Films Under Bending Conditions, J. Appl. Phys., 111, 014109, 10.1063/1.3673817

2010, Piezoelectric Thin-Film Superlattices Without Using Piezoelectric Materials, J. Appl. Phys., 108, 024304, 10.1063/1.3443404

2014, Flexoelectricity in Soft Materials and Biological Membranes, J. Mech. Phys. Solids, 62, 209, 10.1016/j.jmps.2013.09.021

2014, Electrets in Soft Materials: Nonlinearity, Size Effects, and Giant Electromechanical Coupling, Phys. Rev. E, 90, 012603, 10.1103/PhysRevE.90.012603

2014, Nanoscale Flexoelectric Energy Harvesting, Int. J. Solids Struct., 51, 3218, 10.1016/j.ijsolstr.2014.05.018

2007, On the Possibility of Piezoelectric Nanocomposites Without Using Piezoelectric Materials, J. Mech. Phys. Solids, 55, 2328, 10.1016/j.jmps.2007.03.016

2004, A Review of Power Harvesting From Vibration Using Piezoelectric Materials, Shock Vib. Dig., 36, 197, 10.1177/0583102404043275

2013, Flexoelectric Nano-Generator: Materials, Structures and Devices, Nano Energy, 2, 1079, 10.1016/j.nanoen.2013.09.001

2008, Dramatic Enhancement in Energy Harvesting for a Narrow Range of Dimensions in Piezoelectric Nanostructures, Phys. Rev. B, 78, 121407, 10.1103/PhysRevB.78.121407

2009, Erratum: Dramatic Enhancement in Energy Harvesting for a Narrow Range of Dimensions in Piezoelectric Nanostructures [Phys. Rev. B, 78, 121407 (R)(2008)], Phys. Rev. B, 79, 159901, 10.1103/PhysRevB.79.159901

2014, Piezoelectricity Above the Curie Temperature? Combining Flexoelectricity and Functional Grading to Enable High-Temperature Electromechanical Coupling, Appl. Phys. Lett., 104, 122904, 10.1063/1.4869478

2010, Flexoelectric Rotation of Polarization in Ferroelectric Thin Films, Nat. Mater., 23, 963, 10.1038/nmat3141

2009, The Origins of Electromechanical Indentation Size Effect in Ferroelectrics, Appl. Phys. Lett., 95, 142901, 10.1063/1.3231442

2015, Fracture Toughening and Toughness Asymmetry Induced by Flexoelectricity, Phys. Rev. B, 92, 094101, 10.1103/PhysRevB.92.094101

2015, Defects in Flexoelectric Solids, J. Mech. Phys. Solids, 84, 95, 10.1016/j.jmps.2015.07.013

2016, Flexoelectric MEMS: Towards an Electromechanical Strain Diode, Nanoscale, 8, 1293, 10.1039/C5NR06514C

2015, A Flexoelectric Microelectromechanical System on Silicon, Nat. Nanotechnol., 10.1038/nnano.2015.260

2013, Giant Flexoelectric Polarization in a Micromachined Ferroelectric Diaphragm, Adv. Funct. Mater., 23, 124, 10.1002/adfm.201200839

2013, Flexoelectricity and Thermal Fluctuations of Lipid Bilayer Membranes: Renormalization of Flexoelectric, Dielectric, and Elastic Properties, Phys. Rev. E, 87, 032715, 10.1103/PhysRevE.87.032715

1986, Is Flexoelectricity the Coupling Factor Between Chemical Energy and Osmotic Work in the Pump? A Model of Pump, Gen. Physiol. Biophys., 5, 391

1975, Flexoelectric Model for Active Transport, Physical and Chemical Bases of Biological Information Transfer, 111, 10.1007/978-1-4684-2181-1_9

2006, Liquid Crystal Model of Membrane Flexoelectricity, Phys. Rev. E, 74, 011710, 10.1103/PhysRevE.74.011710

2008, An Electromechanical Liquid Crystal Model of Vesicles, J. Mech. Phys. Solids, 56, 2844, 10.1016/j.jmps.2008.04.006

2001, Voltage-Induced Membrane Movement, Nature, 413, 428, 10.1038/35096578

2014, The Physics of Hearing: Fluid Mechanics and the Active Process of the Inner Ear, Rep. Prog. Phys., 77, 076601, 10.1088/0034-4885/77/7/076601

2009, Membrane Electromechanics in Biology, With a Focus on Hearing, MRS Bull., 34, 665, 10.1557/mrs2009.178

2000, A Membrane Bending Model of Outer Hair Cell Electromotility, Biophys. J., 78, 2844, 10.1016/S0006-3495(00)76827-5

2006, Electromechanical Models of the Outer Hair Cell Composite Membrane, J. Membr. Biol., 209, 135, 10.1007/s00232-005-0843-7

2009, Piezo- and Flexoelectric Membrane Materials Underlie Fast Biological Motors in the Inner Ear, MRS Proc., 1186, 1186-JJ06-04, 10.1557/PROC-1186-JJ06-04

2001, Micro-and Nanomechanics of the Cochlear Outer Hair Cell, Annu. Rev. Biomed. Eng., 3, 169, 10.1146/annurev.bioeng.3.1.169

2009, Hair Cell Bundles: Flexoelectric Motors of the Inner Ear, PLoS One, 4, e5201, 10.1371/journal.pone.0005201

2012, Linear Oscillatory Dynamics of Flexoelectric Membranes Embedded in Viscoelastic Media With Applications to Outer Hair Cells, J. Non-Newtonian Fluid Mech., 185, 1, 10.1016/j.jnnfm.2012.07.007

2013, Flexoelectricity From Density-Functional Perturbation Theory, Phys. Rev. B, 88, 174106, 10.1103/PhysRevB.88.174106

1990, Flexoelectricity of Lipid Bilayers, Liq. Cryst., 7, 439, 10.1080/02678299008033820

1989, Curvature-Electric Effects in Artificial and Natural Membranes Studied Using Patch-Clamp Techniques, Eur. Biophys. J., 17, 13, 10.1007/BF00257141

1986, Curvature-Electric Effect in Black Lipid Membranes, Eur. Biophys. J., 13, 139, 10.1007/BF00542559

1993, Flexoelectric Effects in Model and Native Membranes Containing Ion Channels, Eur. Biophys. J., 22, 289, 10.1007/BF00180263

1994, First Observation of the Converse Flexoelectric Effect in Bilayer Lipid Membranes, J. Phys. Chem., 98, 3076, 10.1021/j100063a004