Flexible quasi-solid-state planar micro-supercapacitor based on cellular graphene films

Materials Horizons - Tập 4 Số 6 - Trang 1145-1150
Yuanlong Shao1,2,3,4, Jianmin Li5,6,7,8,4, Yaogang Li5,7,9,10,8, Hongzhi Wang5,6,7,8,4, Qinghong Zhang5,6,7,8,4, Richard B. Kaner1,11,2,3
1Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, California 90095, USA
2Los Angeles
3Los Angeles (UCLA)
4State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai, China
5China
6College of Material Science and Engineering
7Donghua University.
8Shanghai
9Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, Donghua University, Shanghai, China.
10Ministry of Education
11Department of Materials Science and Engineering, UCLA, Los Angeles, California 90095, USA

Tóm tắt

Quasi-solid-state micro-supercapacitors with cellular graphene film as the active material and polyvinyl alcohol/H3PO4as the gel electrolyte have been fabricated. The 3D porous graphene films not only serve as high performance supercapacitor electrodes, but also provide an abundant ion reservoir for the gel electrolyte.

Từ khóa


Tài liệu tham khảo

Gao, 2016, Nature, 529, 509, 10.1038/nature16521

Kim, 2008, Science, 320, 507, 10.1126/science.1154367

Shao, 2015, Chem. Soc. Rev., 44, 3639, 10.1039/C4CS00316K

Rogers, 2010, Science, 327, 1603, 10.1126/science.1182383

Sekitani, 2008, Science, 321, 1468, 10.1126/science.1160309

El-Kady, 2016, Nat. Rev. Mater., 1, 16033, 10.1038/natrevmats.2016.33

Armand, 2008, Nature, 451, 652, 10.1038/451652a

Li, 2017, Small, 13, 1700380, 10.1002/smll.201700380

Zheng, 2017, ACS Nano, 11, 2171, 10.1021/acsnano.6b08435

Kyeremateng, 2017, Nat. Nanotechnol., 12, 7, 10.1038/nnano.2016.196

Qi, 2017, Adv. Mater., 29, 1602802, 10.1002/adma.201602802

Beidaghi, 2014, Energy Environ. Sci., 7, 867, 10.1039/c3ee43526a

El-Kady, 2013, Nat. Commun., 4, 1475, 10.1038/ncomms2446

Wu, 2013, Nat. Commun., 4, 2487, 10.1038/ncomms3487

Huang, 2016, Science, 351, 691, 10.1126/science.aad3345

Yang, 2017, Angew. Chem., Int. Ed., 56, 3920, 10.1002/anie.201700679

Zhang, 2017, Adv. Mater., 29, 1604491, 10.1002/adma.201604491

Wang, 2017, ACS Nano, 11, 4283, 10.1021/acsnano.7b01390

Zheng, 2017, ACS Nano, 11, 4009, 10.1021/acsnano.7b00553

Wu, 2017, J. Am. Chem. Soc., 139, 4506, 10.1021/jacs.7b00805

El-Kady, 2015, Proc. Natl. Acad. Sci. U. S. A., 112, 4233, 10.1073/pnas.1420398112

Liu, 2017, Nano Res., 10, 1524, 10.1007/s12274-017-1448-z

Li, 2017, Adv. Energy Mater., 7, 1601847, 10.1002/aenm.201601847

Lin, 2014, Nat. Commun., 5, 5714, 10.1038/ncomms6714

Peng, 2015, ACS Nano, 9, 5868, 10.1021/acsnano.5b00436

Zhang, 2017, Small, 13, 1603114, 10.1002/smll.201603114

Li, 2016, Adv. Mater., 28, 838, 10.1002/adma.201503333

Peng, 2014, Chem. Soc. Rev., 43, 3303, 10.1039/c3cs60407a

Pech, 2010, Nat. Nanotechnol., 5, 651, 10.1038/nnano.2010.162

Gao, 2011, Nat. Nanotechnol., 6, 496, 10.1038/nnano.2011.110

Shao, 2013, J. Mater. Chem. C, 1, 1245, 10.1039/C2TC00235C

Zhong, 2015, Chem. Soc. Rev., 44, 7484, 10.1039/C5CS00303B

Lu, 2014, Energy Environ. Sci., 7, 2160, 10.1039/c4ee00960f

Shao, 2014, NPG Asia Mater., 6, e119, 10.1038/am.2014.59

Shao, 2016, Adv. Mater., 28, 6719, 10.1002/adma.201506157

Maiti, 2014, Adv. Mater., 26, 615, 10.1002/adma.201303503

Niu, 2012, Adv. Mater., 24, 4144, 10.1002/adma.201200197

Chen, 2011, Nat. Mater., 10, 424, 10.1038/nmat3001

Peng, 2016, Energy Environ. Sci., 9, 2847, 10.1039/C6EE01717G

Li, 2016, Adv. Energy Mater., 6, 1600909, 10.1002/aenm.201600909

Liu, 2013, Adv. Funct. Mater., 23, 4111, 10.1002/adfm.201203771

Beidaghi, 2012, Adv. Funct. Mater., 22, 4501, 10.1002/adfm.201201292

Lin, 2012, Nano Lett., 13, 72, 10.1021/nl3034976

Xie, 2016, Nano Energy, 26, 276, 10.1016/j.nanoen.2016.04.045

Xiao, 2017, ACS Nano, 11, 7284, 10.1021/acsnano.7b03288