Flexible microscaffold facilitating the in vitro construction of different cellular constructs

Puwanan Chumtong1, Masaru Kojima1, Mitsuhiro Horade1, Kenichi Ohara2, Kazuto Kamiyama1, Yasushi Mae1, Yoshikatsu Akiyama3, Masayuki Yamato3, Tatsuo Arai1
1Graduate School of Engineering Science, Osaka University, Osaka 560-8531, Japan
2Faculty of Science and Technology, Meijo University, Aichi, 468-8502, Japan
3Institute of Advanced Biomedical Engineering and Science at TWIns, Tokyo Women’s Medical University, Tokyo, 162-8666, Japan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Shimizu T, Yamato M, Kikuchi A, Okano T: Cell sheet engineering for myocardial tissue reconstruction. Biomaterials 2003,24(13):2309–2316. 10.1016/S0142-9612(03)00110-8

Haraguchi Y, Shimizu T, Sasagawa T, Sekine H, Sakaguchi K, Kikuchi T, Sekine W, Sekiya S, Yamato M, Umezu M, Okano T: Fabrication of functional three-dimensional tissues by stacking cell sheets in vitro. Nat Protocols 2012,7(5):850–858. 10.1038/nprot.2012.027

Sugibayashi K, Kumashiro Y, Shimizu T, Kobayashi J, Okano T: A molded hyaluronic acid gel as a micro-template for blood capillaries. J Biomater Sci Polym Ed 2013,24(2):135–147.

Kubo H, Shimizu T, Yamato M, Fujimoto T, Okano T: Creation of myocardial tubes using cardiomyocyte sheets and an in vitro cell sheet-wrapping device. Biomaterials 2007, 28: 3508–3516. 10.1016/j.biomaterials.2007.04.016

Masuda T, Yamagishi Y, Takei N, Owaki H, Matsusaki M, Akashi M, Arai F: Three-dimensional assembly of multilayered tissues using water transfer printing. J Robot Mechatronics 2013,25(4):690–697.

Kachouie NN, Du Y, Bae H, Khabiry M, Ahari AF, Zamanian B, Fukuda J, Khademhosseini A: Directed assembly of cell-laden hydrogels for engineering functional tissues. Organogenesis 2011,6(4):234–244. 10.4161/org.6.4.12650

Nishiguchi A, Yoshida H, Matsusaki M, Akashi M: Rapid construction of three-dimensional multilayered tissues with endothelial tube networks by the cell-accumulation technique. Adv Mater 2011, 23: 3506–3510. 10.1002/adma.201101787

Tsang VL, Bhatia SN: Three-dimensional tissue fabrication. Adv Drug Delivery Rev 2004, 56: 1635–1647. 10.1016/j.addr.2004.05.001

Gwyther TA, Hu JZ, Billiar KL, Rolle MW: Directed cellular self-Assembly to fabricate cell-derived tissue rings for biomechanical analysis and tissue engineering. J Vis Exp 2011,25(57):e3366. doi:10.3791/3366.

Masuda T, Takei N, Nakano T, Anada T, Suzuki O, Arai F: A microfabricated platform to form three-dimensional toroidal multicellular aggregate. Biomed Microdevices 2012,14(6):1085–1093. 10.1007/s10544-012-9713-0

Livoti CM, Morgan JR: Self-assembly and tissue fusion of toroid-shaped minimal building units. Tissue Eng Part A 2010,16(6):2051–2061. 10.1089/ten.tea.2009.0607

Iwase M, Yamada M, Yamada E, Seki M: Formation of cell aggregates using microfabricated hydrogel chambers for assembly into larger tissues. J Robot Mechatronics 2013,25(4):682–689.

Anada T, Masuda T, Honda Y, Fukuda J, Arai F, Fukuda T, Suzuki O: Three-dimensional cell culture device utilizing thin membrane deformation by decompression. Sensor Actuat B-Chem 2010, 147: 376–379. 10.1016/j.snb.2010.01.065

Ma PX: Scaffolds for tissue fabrication. Materialstoday 2004,7(5):30–40.

Volder MD, Reynaerts D (2010) Pneumatic and hydraulic microactuators: a review. J Micromech Microeng 20(4). doi:10.1088/0960–1317/20/4/043001.

Chumtong P, Kojima M, Ohara K, Horade M, Mae Y, Akiyama Y, Yamato M, Arai T (10–13 November 2013) An Active Microscaffold for Applications in Tissue Engineering In: international Symposium on Micro-NanoMechatronics and Human Science.. Institute of Electrical and Electronics Engineers, Nagoya, Japan.

Ryoo JH, Jeong GS, Kang E, Lee SH (2–6 October 2011) Ultrathin, hyperelastic PDMS nano membrane: fabrication and characterization. In: the 15th international conference on miniaturized systems for chemistry and life sciences.. Royal Society of Chemistry, Seattle, Washington, USA.

Kwon HJ, Lee SW, Lee SS: Braille dot display module with a PDMS membrane driven by a thermopneumatic actuator. Sensors Actuat A-Phys 2009,154(2):238–246. 10.1016/j.sna.2008.10.002

Watanabe J, Ishikawa H, Arouette X, Matsumoto Y, Miki N (2012) Demonstration of vibrational braille code display using large displacement micro-electro-mechanical systems actuators. Jpn J Appl Phys: 51. doi:10.1143/JJAP.51.06FL11.

Khanafer K, Duprey A, Schlicht M, Berguer R: Effects of strain rate, mixing ratio, and stress-strain definition on the mechanical behavior of the polydimethylsiloxane (PDMS) material as related to its biological applications. Biomed Microdevices 2009,11(2):503–508. 10.1007/s10544-008-9256-6

Sang S, Witte H: Fabrication of a surface stress-based PDMS micro-membrane biosensor. Microsystem Technol 2010,16(6):1001–1008. 10.1007/s00542-010-1077-x

Thangawng AL, Ruoff RS, Swartz MA, Glucksberg MR: An ultra-thin PDMS membrane as a bio/micro-nano interface: fabrication and characterization. Biomed Microdevices 2007,9(4):587–595. 10.1007/s10544-007-9070-6

Wu H, Huang B, Zare RN: Construction of microfluidic chips using polydimethylsiloxane for adhesive bonding. R Soc Chem 2005, 5: 1393–1398.

Eddings MA, Johnson MA, Gale B (2008) Determining the optimal PDMS-PDMS bonding technique for microfluidic devices. J Micromech Microeng: 18. doi:10.1088/0960–1317/18/6/067001.

Zhang WY, Ferguson GS, Talic-Lucic S (25–29 January 2004) Elastomer-supported cold welding for room temperature wafer-level bonding In: the 17th IEEE international conference on micro electro mechanical systems.. Institute of Electrical and Electronics Engineers, Maastrichit, Netherlands.

Aroutte X, Matsumoto Y, Ninomiya T, Okayama Y, Miki N: Dynamic characteristics of a hydraulic amplification mechanism for large displacement actuators systems. Sensors 2010, 10: 2946–2956. 10.3390/s100402946

Merkel TC, Bondar VI, Nagai K, Freeman BD, Pinnau I: Gas sorption, diffusion, and permeation in poly(dimethylsiloxane). J Polym Sci Part B 2000, 38: 415–434. 10.1002/(SICI)1099-0488(20000201)38:3<415::AID-POLB8>3.0.CO;2-Z

Johnson M, Liddiard G, Eddings M, Gale B (2009) Bubble inclusion and removal using PDMS membrane-based gas permeation for applications in pumping, valving and mixing in microfluidic devices. J Micromech Microeng 19(9). doi:10.1088/0960–1317/19/9/095011.

Zhang Y, Ishida M, Kazoe Y, Sato Y, Miki N: Water-vapor permeability control of PDMS by the dispersion of collagen powder. IEEJ T Electr Electr 2009,4(3):442–449. 10.1002/tee.20429