Flavonoid engineering of flax potentiate its biotechnological application
Tóm tắt
Flavonoids are a group of secondary plant metabolites important for plant growth and development. They show also a protective effect against colon and breast cancer, diabetes, hypercholesterolemic atherosclerosis, lupus nephritis, and immune and inflammatory reactions. Thus, overproduction of these compounds in flax by genetic engineering method might potentiate biotechnological application of these plant products. Flax plants of third generation overexpressing key genes of flavonoid pathway cultivated in field were used as plant material throughout this study. The biochemical properties of seed, oil and seedcake extracts and fibre from natural and transgenic flax plants were compared. The data obtained suggests that the introduced genes were stably inherited and expressed through plant generations. Overproduction of flavonoid compounds resulted in increase of fatty acids accumulation in oil from transgenic seeds due to protection from oxidation offered during synthesis and seed maturation. The biochemical analysis of seedcake extracts from seeds of transgenic flax revealed significant increase in flavonoids (kaempferol), phenolic acids (coumaric, ferulic, synapic acids) and lignan content. Fibres, another product of flax plant showed increase in the level of catechine and acetylvanillone and decrease in phenolic acids upon flax modification. Biochemical analysis results were confirmed using IR spectroscopy. The integral intensities of IR bands have been used for identification of the component of phenylpropanoid pathway in oil, seedcake extract and fibre from control and transgenic flax. It was shown that levels of flavonoids, phenolic acids and lignans in oil and seedcake extract was higher in transgenic flax products compared to control. An FT-IR study of fibres confirmed the biochemical data and revealed that the arrangement of the cellulose polymer in the transgenic fibres differs from the control; in particular a significant decrease in the number of hydrogen bonds was detected. All analysed products from generated transgenic plants were enriched with antioxidant compounds derived from phenylopropanoid pathway Thus the products provide valuable source of flavonoids, phenolic acids and lignan for biomedical application. The compounds composition and quantity from transgenic plants was confirmed by IR spectroscopy. Thus the infrared spectroscopy appeared to be suitable method for characterization of flax products.
Tài liệu tham khảo
Huang S, Milles DE: Gamma-linolenic acid: Metabolism and its roles in nutrition and medicine. 1996
Huang S, Ziboh A: Gamma-linolenic acid: Recent advances in biotechnology and clinical applications. Edited by: Champaign IAP. 2001
Simopoulos AP: The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomedicine and Pharmacotheraphy. 2002, 56: 365-379. 10.1016/S0753-3322(02)00253-6.
Dribnenki J, Green AG: Linola 947- low linolenic flax. Canadian Journal of Plant Science. 1995, 75: 201-202.
Green AG: A mutant genotype of flax (Linum usitatissimum L.) containing very low levels of linolenic acid in its seed oil. Canadian Journal of Plant Science. 1986, 66: 499-503. 10.4141/cjps86-068.
Czemplik M, Szopa J: Optimizing biomedical and industrial products development based on flax. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources. 2009, 4 (062):
Skórkowska-Telichowska K, Zuk M, Kulma A, Bugajska-Prusak A, Ratajczak K, Gąsiorowski K, Kostyn K, Szopa J: New dressing materials derived from transgenic flax products to treat long-standing venous ulcers--a pilot study. Wound Repair and Regeneration. 2010, 18: 168-179.
Holton TA, Cornish E: Genetic and biochemistry of anthocyanin biosynthesis. Plant Cell. 1995, 7: 1071-1083. 10.1105/tpc.7.7.1071.
Martens S, Mithöfer A: Flavones and flavone synthases. Phytochemistry. 2005, 66: 2399-2407. 10.1016/j.phytochem.2005.07.013.
Winkel-Shirley B: Flavonoid Biosynthesis. A Colorful Model for Genetics, Biochemistry, Cell Biology, and Biotechnology. Plant Physiol. 2001, 126: 485-493. 10.1104/pp.126.2.485.
Pietta PG: Flavonoids as Antioxidants. J Nat Prod. 2000, 63: 1035-1042. 10.1021/np9904509.
Harborne JB, Williams ChA: Advances in flavonoids research since 1992. Phytochemistry. 2000, 55: 481-504. 10.1016/S0031-9422(00)00235-1.
Cushni PT, Lamb A: Antimicrobial activity of flavonoids. Int J Antimicrob Agents. 2005, 26: 343-356. 10.1016/j.ijantimicag.2005.09.002.
Ryan KG, Swinny EE, Markham KR, Winefield C: Flavonoid gene expression and UV photoprotection in transgenic and mutant Petunia leaves. Phytochemistry. 2002, 59: 23-32. 10.1016/S0031-9422(01)00404-6.
Lee JH, Shim JS, Lee JS, Kim JK, Yang IS, Chung MS, Kim KH: Inhibition of pathogenic bacterial adhesion by acidic polysaccharide from green tea (Camellia sinensis). J Agric Food Chem. 2006, 54: 8717-8723. 10.1021/jf061603i.
Arora A, Muraleedharan GN, Strasburg GM: Structure activity relationships for antioxidant activities of a series of flavonoids in a liposomal system. Free Radical Biol Med. 1998, 9: 1355-1363. 10.1016/S0891-5849(97)00458-9.
Lorenc-Kukuła K, Amarowicz R, Oszmiański J, Doermann P, Starzyki M, Skała J, Żuk M, Kulma A, Szopa J: Pleiotropic Effect of Phenolic Compounds Content Increases in Transgenic Flax Plant. J Agric Food Chem. 2005, 53: 3685-3692.
Prescha A, Siger A, Lorenc-Kukuła K, Biernat J, Nogala-Kałucka M, Szopa J: Badania nad składem i podatnością na utlenianie oleju z nasion lnu modyfikowanego genetycznie. BROMAT.CHEM.TOKSYKOL. 2008, XLI: 286-292.
Lukaszewicz M, Matysiak-Kata I, Skała J, Fecka I, Cisowski W, Szopa J: Antioxidant capacity manipulation in transgenic potato tuber by changes in phenolic compounds content. Agric Food Chem. 2004, 52: 1526-1533. 10.1021/jf034482k.
Wróbel M, Zebrowski J, Szopa J: Polyhydroxybutyrate synthesis in transgenic flax. J.Biotech. 2004, 107: 41-54.
Logemann J, Schell J, Willmitzer L: A rapid method for the isolation of RNA from plant tissue. Anal Biochem. 1987, 163: 21-26. 10.1016/0003-2697(87)90086-8.
Prescha A, Świędrych A, Biernat J, Szopa J: Increase in lipid content inpotato tubers modified by 14-3-3 gene overexpression. J Agric Food Chem. 2001, 49: 3638-3643. 10.1021/jf010258o.
Naczk M, Shahidi F: Extraction and analysis of phenolics in food. J Chromatogr A. 2004, 1054: 95-111.
Velasco L, Goffman D: Tocopherol,plastochromanol and fatty acid patterns in the genus Linum. Plant Syst Evol. 2000, 221: 77-88. 10.1007/BF01086382.
Lorenc-Kukuła K, Zuk M, Kulma A, Czemplik M, Kostyn K, Skala J, Starzycki M, Szopa J: Enginiering flax with the GT Family I Solanum sogerandinum gycosyltransferase SsGT1 Confers Increased Resistance to Fusarium Infection. J Agric Food Chem. 2009, 57 (15): 6698-6705.
Lukaszewicz M, Matysiak-Kata I, Aksamit A, Oszmianski J, Szopa J: 14-3-3 Protein regulation of the antioxidant capacity of transgenic potato tubers. Plant Sci. 2002, 163: 125-130. 10.1016/S0168-9452(02)00081-X.
Wróbel-Kwiatkowska M, Starzycki M, Żebrowski J, Oszmiański J, Szopa J: Engineering of PHB synthesis causes improved elastic properties of flax fibers. Biotechnol Prog. 2007, 23: 269-277.
Updegraff D: Semimicro determination of cellulose in biological materials. Anal Biochem. 1969, 32: 420-424. 10.1016/S0003-2697(69)80009-6.
Iiyama K, Wallis A: Determination of lignin in herbaceous plants by an improved acetyl bromide procedure. J Food Sci and Agri. 1990, 51: 145-161. 10.1002/jsfa.2740510202.
Melton LD, Smith G: Isolation of cell wall and fractionation of cell wall polysaccharides. 2001
Lorenc-Kukula K, Jafra S, Oszmianski J, Szopa J: Ectopic Expression of Anthocyanin 5-O-Glucosyltransferase in Potato Tuber Causes Increased Resistance to Bacteria. J Agric Food Chem. 2005, 53: 272-281. 10.1021/jf048449p.
Lukaszewicz M, Szopa J, Krasowska A: Susceptibility of lipids from different flax cultivars to peroxidation and its lowering by added antioxidants. Food Chem. 2004, 88: 225-231. 10.1016/j.foodchem.2003.12.042.
Di Candilo M, Ranalli P, Bozzi C, Focher B, Mastromei G: Preliminary results of tests facing with the controlled retting of hemp. Industrial Crops and Products. 2000, 11: 197-203. 10.1016/S0926-6690(99)00047-3.
Easson LD, Molloy R: Retting-a key process in the production of high value fibre from flax. Outlook Agric. 1996, 25: 235-242.
Günzler H, Gremlich U: IR Spectroscopy. An Introduction, Wiley-VCh, Weinheim, Germany. 2002, Chapter 6.4: 178-
Ram MS, Dowell FE, Seitz LM: FT-Raman spectra of unsoaked and NaOH-soaked wheat kernels, bran, and ferulic acid. Cereall Chemistry. 2003, 80: 188-10.1094/CCHEM.2003.80.2.188.
Sebastian S, Sundaraganesan N, Manoharan S: Molecular structure, spectroscopic studies and first-order molecular hyperpolarizabilities of ferulic acid by density functional study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2009, 74: 312-10.1016/j.saa.2009.06.011.
Socrates G: Infrared and Raman Characteristic Group Frequencies. 2001, J Wiley & Sons, Ltd, Chichester, New York, Weinheim, Toronto, Brisbane, Singapore, Chapter 2: 50-third
Wojtkowiak B, Chabanel M: Spectrochimie Moleculaire, Technique et Documentation. 1984, Warszawa: PWN, Chapter 4: 114-
Zuk M, Dymińska L, Kulma A, Prescha A, Szopa J, Mączka M, Szołtysek K, Hanuza J: IR and Raman studies of oil and seedcake extracts from natural and genetically modified flax seeds. Spectrochemica Acta Part A. 2010
Edwards HGM, Farwell DW, Webster D: Raman microscopy of untreated natural plant fibres. Spectrochimica Acta Part A. 1997, 53: 2383-2392. 10.1016/S1386-1425(97)00178-9.
Jahn A, Schroder MW, Futing M, Schenzel K, Diepenbrock W: Characterization of alkali treated flax fibres by means of FT Raman spectroscopy and environmental scanning electron microscopy. Spectrochim Acta Part A. 2002, 58: 2271-2279. 10.1016/S1386-1425(01)00697-7.
Wróbel-Kwiatkowska M, Szopa J, Dymińska L, Mączka M, Hanuza J: Poly-3-hydroxy butyric acid interaction with the transgenic flax fibers: FT-IR and Raman spectra of the composite extracted from a GM flax. Biotechnology Progress. 2009, 25: 1489-1498.
Boeriu CG, Bravo D, Gosselink RJA, van Dam JEG: Characerisation of structure-dependent functional properties of lignin with infrared spectroscopy. Industr Crops and Prod. 2004, 20: 205-10.1016/j.indcrop.2004.04.022.
Wróbel-Kwiatkowska M, Żuk M, Szopa J, Dymińska L, Mączka M, Hanuza J: Poly-3-hydroxy butyric acid interaction with the transgenic flax fibers: FT-IR and Raman spectra of the composite extracted from a GM flax. Spectrochimica Acta Part A. 2009, 73: 286-294.
Htoo JK, Meng X, Patience JF, Dugan ME, Zijlstra RT: Effects of coextrusion of flaxseed and field pea on the digestibility of energy, ether extract, fatty acids, protein, and amino acids in grower-finisher pigs. J Anim Sci. 2008, 86 (11): 2942-2951. 10.2527/jas.2007-0313.
Bledzki AK, Faruk O, Sperber VE: Cars from Bio-Fibres. Macromol Mater Eng. 2006, 291: 449-457. 10.1002/mame.200600113.
Schijlen EG, Ric de Vos CH, van Tunen AJ, Bovy AG: Modification of flavonoid biosynthesis in crop plants. Phytochemistry. 2004, 65: 2631-2648. 10.1016/j.phytochem.2004.07.028.
Adlercreutz H: Phytoestrogens and cancer. Lancet Oncol. 2002, 3: 364-373. 10.1016/S1470-2045(02)00777-5.
Besseau S, Hoffman L, Geoffroy P, Lapierre C, Pollet B, Legrand M: Flavonoid accumulation in Arabidopsis repressed in lignin synthesis affects auxin transport and plant growth. Plant Cell. 2007, 19 (1): 148-162. 10.1105/tpc.106.044495.
Donaldson MS: Nutrition and cancer: a review of the evidence for an anti-cancer diet. NutrJ. 2004, 3 (19):
Sung MK, Lautens M, Thompson LU: Mammalian lignans inhibit the growth of estrogen-independent human colon tumor cells. Anticancer res. 1998, 18: 1405-1408.
Saffron A, Whitehead SR: Phytoestrogens oestrogen synthesis and breast cancer. Journal of Steroid Biochemistry & Molecular Biology. 2008, 108: 186-195.
Westcott ND, Muir AD: Flax seed lignan in disease prevention and health promotion. Phytochem ReV. 2003, 2: 401-417. 10.1023/B:PHYT.0000046174.97809.b6.
Arts ICV, Hollman PCH: Polyphenols and disease risk in epidemiologic studies. Am J Clin Nutr. 2005, 81: S317-S325.
Loh PS, Miller A, Reeves AD, Harvey SM, Overnell J: Optimised recovery of lignin-derived phenols in a Scottish fjord by the CuO oxidation method. J Environ Monit. 2008, 10 (10): 1187-1194. 10.1039/b808970a.
Prasad K: Secoizolariciresinol diglucoside from flaxseed delays the development of type 2 diabetes in Zucker rat. Journal of Laboratory and Clinical Medicine. 2001, 138 (1): 32-39. 10.1067/mlc.2001.115717.
Prasad K: Oxidative stress as a mechanism of diabetes in diabetic BB prone rats: Effect of secoisolariciresinol diglucoside (SDG). Molecullar and Cellular Biochemistry. 2000, 209: 89-96. 10.1023/A:1007079802459.