Fixed point theorems in a new type of modular metric spaces
Tóm tắt
In this paper, considering both a modular metric space and a generalized metric space in the sense of Jleli and Samet (Fixed Point Theory Appl. 2015:61, 2015), we introduce a new concept of generalized modular metric space. Then we present some examples showing that the generalized modular metric space includes some kind of metric structures. Finally, we provide some fixed point results for both contraction and quasicontraction type mappings on generalized modular metric spaces.
Tài liệu tham khảo
Abdou, A.A.N., Khamsi, M.A.: Fixed point results of pointwise contractions in modular metric spaces. Fixed Point Theory Appl. 2013, 163 (2013)
Chistyakov, V.V.: Modular metric spaces, I: basic concepts. Nonlinear Anal. 72(1), 1–14 (2010)
Chistyakov, V.V.: Modular metric spaces, II: application to superposition operators. Nonlinear Anal. 72(1), 15–30 (2010)
Ćirić, L.B.: A generalization of Banach’s contraction principle. Proc. Am. Math. Soc. 45, 267–273 (1974)
Dominguez Benavides, T., Khamsi, M.A., Samadi, S.: Uniformly Lipschitzian mappings in modular function spaces. Nonlinear Anal. 46(2), 267–278 (2001)
Jleli, M., Samet, B.: A generalized metric space and related fixed point theorems. Fixed Point Theory Appl. 2015, 61 (2015)
Karapinar, E., O’Regan, D., Róldan López de Hierro, A.F., Shahzad, N.: Fixed point theorems in new generalized metric spaces. J. Fixed Point Theory Appl. 18, 645–671 (2016)
Khamsi, M.A., Kirk, W.A.: An Introduction to Metric Spaces and Fixed Point Theory. Wiley, New York (2001)
Khamsi, M.A., Kozlowski, W.K.: Fixed Point Theory in Modular Function Spaces. Birkháuser, Basel (2015)
Khamsi, M.A., Kozlowski, W.K., Reich, S.: Fixed point theory in modular function spaces. Nonlinear Anal. 14, 935–953 (1990)
Khamsi, M.A., Kozlowski, W.M.: On asymptotic pointwise contractions in modular function spaces. Nonlinear Anal. 73, 2957–2967 (2010)
Musielak, J.: Orlicz Spaces and Modular Spaces. Lecture Notes in Math., vol. 1034. Springer, Berlin (1983)
Nakano, H.: Modulared Semi-Ordered Linear Spaces. Maruzen, Tokyo (1950)