Fixed-point theorems for the sum of two operators under ω-condensing
Tóm tắt
The purpose of this paper is to establish fixed-point theorems for the sum of two operators A and B, where the operator A is assumed to be contractive with respect to the measure of weak noncompactness, while B is an φ-nonlinear contraction. In the last section, we apply such results to study the existence of solutions to a nonlinear Hammerstein integral equation in
space.
Tài liệu tham khảo
Krasnosel’skii MA: Some problems of nonlinear analysis. Am. Math. Soc. Transl. Ser. 2 1958, 10(2):345–409.
Darbo G: Punti uniti in transformazioni a codominio non compatto. Rend. Semin. Mat. Univ. Padova 1955, 24: 84–92.
Sadovskii BN: On a fixed point principle. Funkc. Anal. Prilozh. 1967, 4(2):74–76.
De Blasi FS: On a property of the unit sphere in Banach spaces. Bull. Math. Soc. Sci. Math. Roum. 1977, 21: 259–262.
Emmanuele G: Measure of weak noncompactness and fixed point theorems. Bull. Math. Soc. Sci. Math. Roum. 1981, 25: 353–358.
Garcia-Falset J, Latrach K: Krasnosel’skii-type fixed-point theorems for weakly sequentially continuous mappings. Bull. Lond. Math. Soc. 2012, 44: 25–38. 10.1112/blms/bdr035
Latrach K, Taoudi MA, Zeghal A: Some fixed point theorems of the Schauder and Krasnosel’skii type and application to nonlinear transport equations. J. Differ. Equ. 2006, 221: 256–271. 10.1016/j.jde.2005.04.010
Latrach K, Taoudi MA:Existence results for a generalized nonlinear Hammerstein equation on L 1 -spaces. Nonlinear Anal. 2007, 66: 2325–2333. 10.1016/j.na.2006.03.022
Appell J, De Pascale E: Su alcuni parametri connessi con la misura di non compattezza di Hausdorff in spazi di funzioni misurabili. Boll. Unione Mat. Ital, B 1984, 3: 497–515.
Garcia-Falset J, Latrach K, Moreno-Galvez E, Taoudi MA: Schaefer-Krasnosel’skii fixed point theorems using a usual measure of weak noncompactness. J. Differ. Equ. 2012, 252: 3436–3452. 10.1016/j.jde.2011.11.012
Agarwal RP, O’Regan D, Taoudi MA: Browder-Krasnosel’skii type fixed point theorems in Banach spaces. Fixed Point Theory Appl. 2010. doi:10.1155/2010/243716
Djebali S, Sahnoun Z:Nonlinear alternatives of Schauder and Krasnosel’skij types with applications to Hammerstein integral equations in L 1 spaces. J. Differ. Equ. 2010, 249: 2061–2075. 10.1016/j.jde.2010.07.013
Ben Amar A, Garcia-Falset J: Fixed point theorems for 1-set weakly contractive and pseudocontractive operators on an unbounded domain. Port. Math. 2011, 68(2):125–147.
Agarwal RP, O’Regan D, Taoudi MA: Fixed point theorems for ws-compact mappings in Banach spaces. Fixed Point Theory Appl. 2010., 2010: Article ID 183596
Megginson RE: An Introduction to Banach Space Theory. Springer, Berlin; 1991.
Agarwal RP, Hussain N, Taoudi MA: Fixed point theorems in ordered Banach spaces and applications to nonlinear integral equations. Abstr. Appl. Anal. 2012. doi:10.1155/2012/245872
Boyd D, Wong JSW: On nonlinear contractions. Proc. Am. Math. Soc. 1969, 20: 458–464. 10.1090/S0002-9939-1969-0239559-9
Taoudi MA: Krasnosel’skii type fixed point theorems under weak topology features. Nonlinear Anal. 2010, 72: 478–482. 10.1016/j.na.2009.06.086
Barroso CS: Krasnosel’skii’s fixed point theorem for weakly continuous maps. Nonlinear Anal. 2003, 55: 25–31. 10.1016/S0362-546X(03)00208-6
Zeidler E: Nonlinear Functional Analysis and Its Application I: Fixed-Point Theorems. Springer, Berlin; 1986.
Lucchetti R, Patrone F: On Nemytskij’s operator and its application to the lower semicontinuity of integral functionals. Indiana Univ. Math. J. 1980, 29(5):703–735. 10.1512/iumj.1980.29.29051
Moreira DR, Teixeira EVO: Weak convergence under nonlinearities. An. Acad. Bras. Ciênc. 2003, 75(1):9–19.