First-principles investigation of the structural stability and electronic properties of Pd doped monoclinic Cu6Sn5 intermetallic compounds

Walter de Gruyter GmbH - Tập 32 - Trang 592-596 - 2014
Wei-Quan Shao1,2, Wen-Cai Lu3, Sha-Ou Chen1,2
1College of Physics Science, Qingdao University, Qingdao, China
2Key Laboratory of Photonics Materials and Technology in Universities of Shandong (Qingdao University), Qingdao, China
3Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, China

Tóm tắt

Tri-layer Au/Pd/Ni(P) films have been widely used as surface finish over the Cu pads in high-end packaging applications. It was found that a thin (Cu,Pd)6Sn5 IMC layer was beneficial in effective reducing inter-diffusion between a Cu substrate and a solder, and therefore the growth of the IMC layer and the EM (electromigration) processes. In this study, the structural properties and phase stability of monoclinic Cu6Sn5-based structures with Pd substitutions were studied by using the first-principles method. The (Cu,Pd)6Sn5 structure with the 4e site substituted by Pd has the lowest heat of formation and is the most stable among (Cu,Pd)6Sn5 structures. Hybridization of Pd-d and Sn-p states is a dominant factor for stability improvement. Moreover, Pd atoms concentration corresponding to the most stable structure of (Cu,Pd)6Sn5 was found to be 1.69 %, which is consistent with the experimental results.

Tài liệu tham khảo

Ho C.-Y., Duh J.-G., Mater. Lett., 92 (2013), 278. Yoon J.W., Noh B.I., Yoon J.H., Kang H.B., Jung S.B., J. Alloy. Compd., 509 (2011), L153. Ho C.E., Lin S.W., Lin Y.C., J. Alloy. Compd., 509 (2011), 7749. Suganuma K., Kim K.S., JOM-US, 60 (2008), 61. Chien-Fu T., Tae-Kyu L., Ramakrishna G., Kuo-Chuan L., Jenq-Gong D., Mater. Lett., 65 (2011), 3216. Jiang Y.W., Lan C.Y., Yang S.H., Yang S.G., Mater. Lett., 89 (2012), 269. Yu M., Kim J.K., Lee J.H., Kim M.S., Mater. Res. Bull., 45 (2010), 359. Wang I.-T., Duh J.-G., Cheng C.-Y., Wang J., Mater. Sci. Eng. B-Adv., 177(2) (2012), 278. Yang Y., Li Y., Lu H., Yu C., Chen J., Comp. Mater. Sci., 65 (2012), 490. Feng G., Jianmin Q., Takemoto T., J. Electron. Mater., 39 (2010), 426. Schwingenschlögl U., Paola Di C., Nogita K., Gourlay C.M., Appl. Phys. Lett., 96 (2010), 061908. Jiang C., Sordelet D.J., Gleeson B., Acta Mater., 54 (2006), 1147. Segall M.D., Lindan P.J.D., Probert M.J., Pickard C.J., Hasnip P.J., Clark S.J., Payne M.C., J. Phys.-Condens. Matter., 14 (2002), 2717. Fischer T.H., Almlof J., J. Phys. Chem., 96 (1992), 9768. Perdew J.P., Wang Y., Phys. Rev. B, 45 (1992), 13244. Vanderbilt D., Phys. Rev. B, 41 (1990), 7892. Monkhorst H.J., Pack J.D., Phys. Rev. B, 13 (1976), 5188. Larsson A.-K., Carlsson A., Stenberg L., Lidin S., Acta Crystallogr. B, 50 (1994), 636. Fu C.L., Wang X., Ye Y.Y., Ho K.M., Intermetallics, 7 (1999), 179. Ho C.E., Gierlotka W., Lin S.W., J. Mater. Res., 25 (2010), 2078. Ho C.E., Hsu L.H., Lin S.W., Rahman M.A., J. Electron. Mater., 41 (2012), 2. Laurila T., Vuorinen V., Kivilahti J.K., Mater. Sci. Eng. R, 49(1–2) (2005), 1.