First passage time problems in time-dependent fields

Journal of Statistical Physics - Tập 51 - Trang 215-232 - 1988
John E. Fletcher1, Shlomo Havlin1,2, George H. Weiss1
1Division of Computer Research and Technology, National Institutes of Health, Bethesda
2Department of Physics, Bar Ilan University, Ramat Gan, Israel

Tóm tắt

This paper discusses the simplest first passage time problems for random walks and diffusion processes on a line segment. When a diffusing particle moves in a time-varying field, use of the adjoint equation does not lead to any simplification in the calculation of moments of the first passage time as is the case for diffusion in a time-invariant field. We show that for a discrete random walk in the presence of a sinusoidally varying field there is a resonant frequency ϖ* for which the mean residence time on the line segment is a minimum. It is shown that for a random walk on a line segment of lengthL the mean residence time goes likeL 2 for largeL when ϖ≠ϖ*, but when ϖ=ϖ* the dependence is proportional toL. The results of our simulation are numerical, but can be regarded as exact. Qualitatively similar results are shown to hold for diffusion processes by a perturbation expansion in powers of a dimensionless velocity. These results are extended to higher values of this parameter by a numerical solution of the forward equation.

Tài liệu tham khảo

D. C. Schwartz and C. R. Cantor,Cell 37:67 (1984). G. F. Carle, M. Frank, and M. V. Olson,Science 232:65 (1986). S. Fesjian, H. L. Frisch, and T. Jamil,Biopolymers 25:1179 (1986). I. J. Lin and L. Benguigi,Sep. Sci. Tech. 20:359 (1985). G. H. Weiss,Adv. Chem. Phys. 13:1 (1967). C. W. Gardiner,A Handbook of Stochastic Methods, 2nd ed. (Springer-Verlag, New York, 1985). I. Majid, D. Ben-Avraham, S. Havlin, and H. E. Stanley,Phys. Rev. B 30:1626 (1984); S. Havlin, M. Dishon, J. E. Kiefer, and G. H. Weiss,Phys. Rev. Lett. 53:407 (1984). G. H. Weiss,J. Stat. Phys. 42:3 (1986). M. D. Donsker and S. R. S. Varadhan,Commun. Pure Appl. Math. 32:721 (1979).