Finitely labeled generating trees and restricted permutations
Tài liệu tham khảo
Atkinson, 2002, Partially well-ordered closed sets of permutations, Order, 19, 101, 10.1023/A:1016500300436
Banderier, 2002, Generating functions for generating trees, Discrete Math., 246, 29, 10.1016/S0012-365X(01)00250-3
Barcucci, 1999, ECO: a methodology for the enumeration of combinatorial objects, J. Differ. Equations Appl., 5, 435, 10.1080/10236199908808200
Bousquet-Mélou, 2002, Four classes of pattern-avoiding permutations under one roof: generating trees with two labels, Electron. J. Combin., 9, 31, 10.37236/2027
Chen, 2005
Chow, 1999, Forbidden subsequences and Chebyshev polynomials, Discrete Math., 204, 119, 10.1016/S0012-365X(98)00384-7
Duchi, 2004, From object grammars to ECO systems, Theoret. Comput. Sci., 314, 57, 10.1016/j.tcs.2003.10.037
Dulucq, 1996, Permutations with forbidden subsequences and nonseparable planar maps, Discrete Math., 153, 85, 10.1016/0012-365X(95)00130-O
Ferrari, 2002, An algebraic characterization of the set of succession rules, Theoret. Comput. Sci., 281, 351, 10.1016/S0304-3975(02)00020-8
Guibert, 2000, Enumeration of vexillary involutions which are equal to their mirror/complement, Discrete Math., 224, 281, 10.1016/S0012-365X(00)00139-4
Kremer, 2003, Finite transition matrices for permutations avoiding pairs of length four patterns, Discrete Math., 268, 171, 10.1016/S0012-365X(03)00042-6
Pergola, 1998, Schröder triangles, paths, and parallelogram polyominoes, J. Integer Seq., 1
Stankova, 1996, Classification of forbidden subsequences of length 4, European J. Combin., 17, 501, 10.1006/eujc.1996.0044
Stankova, 2004, Explicit enumeration of 321, hexagon-avoiding permutations, Discrete Math., 280, 165, 10.1016/j.disc.2003.06.003
Stanley, 1997, vol. 49
Vatter, 2005