Finite-amplitude elastic waves interacting with temperature and nonequilibrium atomic defect fields

F. Kh. Mirzade1
1Institute of Problems of Laser and Information Technologies, Russian Academy of Sciences, Shatura, Moscow oblast, Russia

Tóm tắt

Nonlinear dynamics of one-dimensional longitudinal waves in isotropic elastic plates was studied taking into account the interaction of displacement fields, temperature, and concentration of nonequilibrium (relaxing) atomic point defects. A nonlinear evolution equation for describing the self-consistent field of longitudinal thermoelastic strain was derived. The effect of generation-recombination processes on the evolution of nonlinear localized and periodic waves was analyzed. In the single-wave approximation, an equation was derived which describes the amplitude variation of nonlinear waves; based on this equation, characteristic features of damping of these waves were considered taking into account low-and high-frequency losses. The interaction of counterpropagating waves is briefly discussed taking into account dissipative effects.

Tài liệu tham khảo

V. A. Krasil’nikov and V. V. Krylov, Introduction to Physical Acoustics (Nauka, Moscow, 1984) [in Russian]. M. Ablovits and Kh. Sigur, Solitons. The Inverse Problem Method (Plenum, New York, 1984; Mir, Moscow, 1987). A. V. Porubov, Amplification of Nonlinear Strain Waves in Solids (World Scientific, Singapore, 2003). A. I. Potapov and I. N. Soldatov, Akust. Zh. 30(6), 819 (1984) [Sov. Phys. Acoust. 30, 486 (1984)]. L. A. Ostrovsky and A. I. Potapov, Modulated Waves. Theory and Applications (Johns Hopkins Univ. Press, London, Baltimore, 1999). A. V. Porubov, G. A. Maugin, and V. V. Mareev, Int. J. Non-Linear Mech. 39(8), 1359 (2004). V. I. Erofeev and N. V. Klyueva, Akust. Zh. 48, 725 (2002) [Acoust. Phys. 48, 643 (2002)]. S. G. Psakh’e, K. P. Zol’nikov, G. E. Rudenskii, et al., Pis’ma Zh. Tekh. Fiz. 25(6), 7 (1999) [Tech. Phys. Lett. 25, 424 (1999)]. J. Betteh and J. Powel, Appl. Phys. 41(7), 3933 (1978). F. Kh. Mirzade, V. Ya. Panchenko, and L. A. Shelepin, Usp. Fiz. Nauk 166, 3 (1996) [Phys.-Usp. 39, 1 (1996)]. A. M. Kosevich, Fundamentals of Lattice Mechanics (Nauka, Moscow, 1972) [in Russian]. L. D. Landau and E. M. Lifshits, Theory of Elasticity (Pergamon, New York, 1986; Nauka, Moscow, 1987). F. Kh. Mirzade, Poverkhnost. Rentgen. Sinkhrotron. Neitron. Issled., No. 9, 90 (2005) [Surface Investigation. X-ray, Synchrotron, and Neutron Techniques]. F. Kh. Mirzade, J. Appl. Phys. 97(8), 084911 (2005). F. Kh. Mirzade, Fiz. Tekhn. Poluprov. 40(3), 269 (2006) [Semiconductors 40, 262 (2006)]. F. Kh. Mirzade, J. Phys.: Condens. Matter 268, 231 (2005). F. Kh. Mirzade, J. Phys.: Condens. Matter 271, 163 (2006). F. Kh. Mirzade, Phys. Status Solidi B 242, 3099 (2005). F. Kh. Mirzade, Phys. Status Solidi B 243, 529 (2006). F. Kh. Mirzade, Poverkhnost. Rentgen. Sinkhrotron. Neitron. Issled., No. 8, 48 (2006) [Surface Investigation. X-ray, Synchrotron, and Neutron Techniques]. A. A. Karabutov, Usp. Fiz. Nauk 147(3), 605 (1985) [Sov. Phys.-Usp. 28, 1042 (1985)]. V. E. Gusev and A. A. Karabutov, Laser Optical Acoustics (Nauka, Moscow, 1991) [in Russian]. K. L. Muratikov, Zh. Tekh. Fiz. 69(7), 59 (1999) [Tech. Phys. 44, 792 (1999)]. G. B. Whitham, Linear and Nonlinear Waves (Wiley, New York, 1974; Mir, Moscow, 1977).