Financial Time Series Prediction Using Elman Recurrent Random Neural Networks

Computational Intelligence and Neuroscience - Tập 2016 - Trang 1-14 - 2016
Jie Wang1, Jun Wang1, Fang Wen2, Hongli Niu1
1School of Science, Beijing Jiaotong University, Beijing 100044, China
2School of Economics and Management, Beijing Jiaotong University, Beijing, 100044, China

Tóm tắt

In recent years, financial market dynamics forecasting has been a focus of economic research. To predict the price indices of stock markets, we developed an architecture which combined Elman recurrent neural networks with stochastic time effective function. By analyzing the proposed model with the linear regression, complexity invariant distance (CID), and multiscale CID (MCID) analysis methods and taking the model compared with different models such as the backpropagation neural network (BPNN), the stochastic time effective neural network (STNN), and the Elman recurrent neural network (ERNN), the empirical results show that the proposed neural network displays the best performance among these neural networks in financial time series forecasting. Further, the empirical research is performed in testing the predictive effects of SSE, TWSE, KOSPI, and Nikkei225 with the established model, and the corresponding statistical comparisons of the above market indices are also exhibited. The experimental results show that this approach gives good performance in predicting the values from the stock market indices.

Từ khóa


Tài liệu tham khảo

10.1002/for.940

2009, International Journal of Innovative Computing, Information and Control, 5, 5021

10.1016/j.physa.2005.08.014

10.1016/j.cie.2011.09.007

10.1016/j.asoc.2006.03.004

10.1016/j.ijforecast.2004.10.008

10.1016/j.eswa.2006.04.007

10.1016/S0142-0615(01)00041-2

10.1155/2015/369298

10.1016/j.neunet.2012.02.039

10.1016/j.physa.2012.05.024

10.1080/10798587.2013.839287

2014, Journal of International Financial Markets, Institutions & Money, 30, 21, 10.1016/j.intfin.2014.01.006

10.1016/j.ijforecast.2010.02.015

10.1007/s00521-010-0362-z

10.1109/TPAMI.2008.137

10.1016/j.neucom.2010.06.004

10.1016/j.eswa.2007.10.005

10.1016/j.eswa.2009.05.086

10.1016/j.neucom.2012.04.013

10.1155/2011/382659

10.1007/s00500-012-0953-y

10.1007/s00500-013-1070-2

10.1016/0364-0213(90)90002-E

10.1007/s00521-011-0609-3

10.1016/j.neucom.2012.01.014

10.1016/0169-2070(93)90079-3

2002

10.1080/08839514.2014.862771

10.1016/s0169-2070(02)00058-4

1998

10.1016/j.ejps.2005.04.010

10.1016/j.engappai.2009.09.015

10.1016/j.simpat.2010.01.003

10.1155/2015/642429

2005

10.1016/j.eswa.2011.07.051

10.1016/j.asoc.2014.04.012

10.1038/nature01624

2000

10.1016/j.eswa.2006.08.001

10.1007/s10618-013-0312-3