Fighting Hate Speech, Silencing Drag Queens? Artificial Intelligence in Content Moderation and Risks to LGBTQ Voices Online

Sexuality & Culture - Tập 25 Số 2 - Trang 700-732 - 2021
Thiago Dias Oliva1,2, Dennys Marcelo Antonialli3, Alessandra Cristina Gomes1
1InternetLab, São Paulo, Brazil
2University of São Paulo, São Paulo, Brazil
3University of São Paulo Law School, São Paulo, Brazil

Tóm tắt

Từ khóa


Tài liệu tham khảo

Adams, C. J. (2019). Tune: Control the comments you see. In: Medium. https://medium.com/jigsaw/tune-control-the-comments-you-see-b10cc807a171. Accessed 31 Oct 2020.

Alexander, J. (2020). YouTube bans Stefan Molyneux, David Duke, Richard Spencer, and more for hate speech. The Verge. https://www.theverge.com/2020/6/29/21307303/youtube-bans-molyneux-duke-richard-spencer-conduct-hate-speech. Accessed 31 Oct 2020.

BBC (2017). YouTube ‘made wrong call’ on Syrian videos. https://www.bbc.com/news/technology-41023234. Accessed 31 Oct 2020.

Bogage, J., & Scott, E. (2020) Twitter permanently bans former KKK leader David Duke. Washington Post. https://www.washingtonpost.com/technology/2020/07/31/twitter-david-duke-ban/. Accessed 31 Oct 2020.

Curtis, S. (2015). Facebook, Google, and Twitter block ‘hash list’ of child porn images. Telegraph. https://www.telegraph.co.uk/technology/internet-security/11794180/Facebook-Google-and-Twitter-to-block-hash-list-of-child-porn-images.html. Accessed 31 Oct 2020.

Davidson, T., Warmsley, D., Macy, M., & Weber, I. (2017). Automated hate speech detection and the problem of offensive language. In Proceedings of the 11th international AAAI conference on web and social media, https://arxiv.org/abs/1703.04009

Duarte, N., Llanso, E., & Loup, A. (2017). Mixed messages? The limits of automated social media content analysis. Center for Democracy and Technology. https://cdt.org/insight/mixed-messages-the-limits-of-automated-social-media-content-analysis. Accessed 31 Oct 2020.

Felbo, B., Mislove, A., Søgaard, A., Rahwan, I., & Lehmann, S. (2017). Using millions of emoji occurrences to learn any-domain representations for detecting sentiment, emotion and sarcasm. In Proceedings of the 2017 conference on empirical methods in natural language processing, https://arxiv.org/abs/1708.00524.

García, L., Moctezuma, D., & Muñiz, V. (2019). A contextualized word representation approach for irony detection. In Proceedings of the Iberian languages evaluation forum 2019, https://ceur-ws.org/Vol-2421/IroSvA_paper_5.pdf.

Gillespie, T. (2014). The relevance of algorithms. In T. Gillespie, P. J. Boczowski, & K. A. Foot (Eds.), Media technologies: Essays on communication, materiality and society (pp. 167–193). Cambridge: The MIT Press.

Gröndahl, T., Pajola, L., Juuti, M., Conti, T., & Asokan, N. (2018). All you need is “love”: Evading hate speech detection. In Proceedings of the 11th ACM workshop on artificial intelligence and security, https://doi.org/10.1145/3270101.3270103.

Hazarika, D., Poria, S., Gorantla, S., Cambria, E., Zimmermann, R., & Mihalcea, R. (2018). CASCADE: Contextual sarcasm detection in online discussion forums. arXiv ahead of print 16 May 2018. https://arxiv.org/abs/1805.06413.

Heisterkamp, B. L., & Alberts, J. K. (2000). Control and desire: Identity formation through teasing among gay men and lesbians. Communication Studies, 51(4), 388–403.

Hosseini, H., Kannan, S., Zhang, B., & Poovendran, R. (2017). Deceiving Google’s perspective API built for detecting toxic comments. arXiv ahead of print 27 February 2017. https://arxiv.org/abs/1702.08138.

Jones, R. G. (2007). Drag queens, drama queens and friends: Drama and performance as a solidarity-building function in a gay male friendship circle. Kaleidoscope, 6(1), 61–84.

Johnson, E. P. (1995). SNAP! culture: A different kind of “reading.” Text and Performance Quarterly, 15(2), 122–142.

Keller, D. (2018). Internet platforms: Observations on speech, danger and money. Hoover Institution. https://www.hoover.org/sites/default/files/research/docs/keller_webreadypdf_final.pdf. Accessed 31 Oct 2020.

Levin, S. (2017). Civil rights groups urge Facebook to fix ‘racially biased’ moderation system. The Guardian. https://www.theguardian.com/technology/2017/jan/18/facebook-moderation-racial-bias-black-lives-matter. Accessed 31 Oct 2020.

Lessig, L. (2006). Code and other laws of cyberspace—version 2.0. New York: Basic Books.

Lux, D., & Mess, L. M. H. (2019). Facebook’s hate speech policies censor marginalized users. Wired. https://www.wired.com/story/facebooks-hate-speech-policies-censor-marginalized-users/. Accessed 31 Oct 2020.

McKinnon, S. (2017). “Building a thick skin for each other”: The use of ‘reading’ as an interactional practice of mock impoliteness in drag queen backstage talk. Journal of Language and Sexuality, 6(1), 90–127.

Mishra, P., Tredici, M., Yannakoudakis, H., & Shutova, E. (2019). Author profiling for hate speech detection. arXiv ahead of print 14 February 2019. https://arxiv.org/abs/1902.06734.

Murray, S. O. (1979). The art of gay insulting. Anthropological Linguistics, 21(5), 211–223.

Nadali, S., Murad, M., & Sharef, N. (2016). Sarcastic tweets detection based on sentiment hashtags analysis. Advanced Science Letters, 22(4), 400–407.

O’Brien, L. (2019). Twitter still has a White Nationalist Problem. HuffPost. https://www.huffpostbrasil.com/entry/twitter-white-nationalist-problem_n_5cec4d28e4b00e036573311d?ri18n=true. Accessed 31 Oct 2020.

Perel, M., & Elkin-Koren, N. (2016). Accountability in algorithmic copyright enforcement. Stanford Technology Law Review, 19(3), 473–533.

Perez, J. (2011). Word play, ritual insult, and volleyball in Peru. Journal of Homosexuality, 58(6), 834–847.

Rangwani, H., Kulshreshtha, D., & Singh, A. (2018). NLPRL-IITBHU at SemEval-2018 task 3: Combining linguistic features and emoji pre-trained CNN for irony detection in Tweets. In Proceedings of the 12th international workshop on semantic evaluation, https://www.aclweb.org/anthology/S18-1104.pdf.

Sap, M., Card, D., Gabriel, S., Choi, Y., & Smith, N. A. (2019). The risk of racial bias in hate speech detection. In Proceedings of the 57th annual meeting of the association for computational linguistics, https://www.aclweb.org/anthology/P19-1163.pdf.

Solon, O. (2017). Facebook asks users for nude photos in project to combat ‘revenge porn’. The Guardian. https://www.theguardian.com/technology/2017/nov/07/facebook-revenge-porn-nude-photos. Accessed 31 Oct 2020.

Suzor, N. (2018). Digital constitutionalism: Using the rule of law to evaluate the legitimacy of governance by platforms. Social Media + Society. https://doi.org/10.1177/2056305118787812

Taylor, J., Peignon, M., & Chen, Y. (2017). Surfacing contextual hate speech words within social media. arXiv ahead of print 28 November 2017. https://arxiv.org/abs/1711.10093.

Yang, F., Peng, X., Ghosh, G., Shilon, R., Ma, H., Moore, E., & Predovic, G. (2019). Exploring deep multimodal fusion of text and photo for hate speech classification. In: Proceedings of the third workshop on abusive language online. https://www.aclweb.org/anthology/W19-3502.pdf.