Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures

American Association for the Advancement of Science (AAAS) - Tập 335 Số 6071 - Trang 947-950 - 2012
L. Britnell1, Р. В. Горбачев2, R. Jalil2, Branson D. Belle2, F. Schedin2, Artem Mishchenko1, Thanasis Georgiou1, M. I. Katsnelson3, L. Eaves4, С. В. Морозов5, N. M. R. Peres6,7, Jon Leist8, A. K. Geǐm2,1, Kostya S. Novoselov1, Л. А. Пономаренко1
1School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK
2Manchester Centre for Mesoscience and Nanotechnology, University of Manchester, Manchester, M13 9PL, UK.
3Institute for Molecules and Materials, Radboud University of Nijmegen, 6525 AJ Nijmegen, Netherlands.
4School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, UK
5Institute for Microelectronics Technology, 142432 Chernogolovka, Russia
6Departamento de Física, Universidade do Minho, P-4710-057, Braga, Portugal.
7Graphene Research Centre and Department of Physics, National University of Singapore, 2 Science Drive 3, 117542 Singapore.
8Momentive Performance Materials, 22557 West Lunn Road, Strongsville, OH 44070, USA.

Tóm tắt

Tunnel Barriers for Graphene Transistors

Transistor operation for integrated circuits not only requires that the gate material has high-charge carrier mobility, but that there is also an effective way of creating a barrier to current flow so that the device can be switched off and not waste power. Graphene offers high carrier mobility, but the shape of its conduction and valence bands enables electron tunneling and makes it difficult to achieve low currents in an “off” state. Britnell et al. (p. 947 , published online 2 February) have fabricated field-effect transistors in which a thin tunneling barrier created from a layered material—either hexagonal boron nitride or molybdenum disulfide—is sandwiched between graphene sheets. These devices exhibit on-off switching ratios of ≈50 and ≈10,000, respectively, at room temperature.

Từ khóa


Tài liệu tham khảo

10.1038/nnano.2007.300

10.1126/science.1158877

10.1038/nnano.2010.89

10.1038/nature09979

10.1038/nature09405

10.1021/nl2016637

10.1126/science.1204428

10.1103/PhysRevLett.99.216802

10.1038/nmat2082

10.1103/PhysRevLett.98.206805

10.1007/s11467-011-0182-3

10.1126/science.1167130

10.1063/1.99649

10.1147/rd.344.0530

10.1063/1.368610

10.1063/1.1600832

10.1103/PhysRevB.84.085301

10.1038/nnano.2010.172

10.1021/nl200758b

10.1073/pnas.0502848102

10.1038/nphys2114

10.1002/smll.201001628

10.1103/RevModPhys.81.109

10.1063/1.1702682

E. L. Wolf Principles of Electron Tunneling Spectroscopy (Oxford Univ. Press Oxford 1985).

10.1103/PhysRevLett.105.136801

10.1038/nmat2968

10.1021/nl202725w

10.1103/PhysRevB.44.7787

10.1021/nl202131q

10.1103/PhysRevB.84.195414

L. D. Landau E. M. Lifshitz Quantum Mechanics (Oxford: Pergamon Oxford 1977).

10.1103/PhysRevB.83.235312

L. Gmelin Gmelin Handbook of Inorganic and Organometallic Chemistry (SpringerVerlag Berlin 1995).