Ferroelectricity in yttrium-doped hafnium oxide

Journal of Applied Physics - Tập 110 Số 11 - 2011
Johannes Müller1, Uwe Schroeder2, T. S. Böscke3, Indra Müller4, U. Böttger4, L. Wilde1, Jonas Sundqvist1, M. Lemberger5, Peter Kücher1, Thomas Mikolajick6,2, L. Frey7,5
1Fraunhofer Center Nanoelectronic Technologies (CNT) 1 , 01099 Dresden, Germany
2Namlab gGmbH 2 , 01187 Dresden, Germany
3Löberwallgraben 2 3 , 99096 Erfurt, Germany
4RWTH Aachen, Institut für Werkstoffe der Elektrotechnik 4 , 52074 Aachen, Germany
5Fraunhofer Institute for Integrated Systems and Device Technology (IISB) 5 , 91058 Erlangen, Germany
6Chair of Nanoelectronic Materials, University of Technology Dresden 6 , 01062 Dresden, Germany
7Chair of Electron Devices, University of Erlangen-Nürnberg 7 , 91058 Erlangen, Germany

Tóm tắt

Structural and electrical evidence for a ferroelectric phase in yttrium doped hafnium oxide thin films is presented. A doping series ranging from 2.3 to 12.3 mol% YO1.5 in HfO2 was deposited by a thermal atomic layer deposition process. Grazing incidence X-ray diffraction of the 10 nm thick films revealed an orthorhombic phase close to the stability region of the cubic phase. The potential ferroelectricity of this orthorhombic phase was confirmed by polarization hysteresis measurements on titanium nitride based metal-insulator-metal capacitors. For 5.2 mol% YO1.5 admixture the remanent polarization peaked at 24 μC/cm2 with a coercive field of about 1.2 MV/cm. Considering the availability of conformal deposition processes and CMOS-compatibility, ferroelectric Y:HfO2 implies high scaling potential for future, ferroelectric memories.

Từ khóa


Tài liệu tham khảo

2006, J. Appl. Phys., 100, 51604, 10.1063/1.2337361

2002, Phys. Rev. B, 65, 233106, 10.1103/PhysRevB.65.233106

2005, Appl. Phys. Lett., 86, 102906, 10.1063/1.1880436

2007, Appl. Phys. Lett., 91, 72902, 10.1063/1.2771376

2011, Appl. Phys. Lett., 99, 102903, 10.1063/1.3634052

2011, Appl. Phys. Lett., 99, 112901, 10.1063/1.3636417

2008, Phys. Rev. B, 78, 12102, 10.1103/PhysRevB.78.012102

2008, J. Appl. Phys., 104, 74101, 10.1063/1.2985908

1975, Nature, 258, 703, 10.1038/258703a0

2004, J. Mater. Res., 19, 693, 10.1557/jmr.2004.19.3.693

2003, J. Appl. Phys., 94, 912, 10.1063/1.1585116

2006, Appl. Phys. Lett., 89, 172107, 10.1063/1.2364601

2009, Electrochem. Solid-State Lett., 12, G1, 10.1149/1.3020763

2009, Electrochem. Solid-State Lett., 12, G50, 10.1149/1.3156833

2010, J. Appl. Phys., 107, 14104, 10.1063/1.3277021

2007, Appl. Phys. Lett., 91, 202909, 10.1063/1.2816121

2006, Appl. Phys. Lett., 89, 142902, 10.1063/1.2355471

2010, Thin Solid Films, 518, 4680, 10.1016/j.tsf.2009.12.058

1975, J. Am. Ceram. Soc., 58, 285, 10.1111/j.1151-2916.1975.tb11476.x

1988, J. Am. Ceram. Soc., 71, 662, 10.1111/j.1151-2916.1988.tb06385.x

1996, J. Phys. Chem. Solids, 57, 289, 10.1016/0022-3697(95)00268-5

2001, Chem. Phys. Lett., 346, 217, 10.1016/S0009-2614(01)00929-0

2006, Appl. Phys. Lett., 89, 12902, 10.1063/1.2216102

2009, J. Vac. Sci. Technol. A, 27, 503, 10.1116/1.3106627

2010, Jap. J. Appl. Phys., 49, 04DC24, 10.1143/JJAP.49.04DC24

1996, J. Mater. Res., 11, 2757, 10.1557/JMR.1996.0350

2009, Microelectronic Engineering, 86, 1818, 10.1016/j.mee.2009.03.076

1990, J. Appl. Phys., 68, 6463, 10.1063/1.346845

1999, Ferroelectrics, 221, 251, 10.1080/00150199908016462

2006, Appl. Phys. Lett., 89, 132903, 10.1063/1.2357032

1986, Acta Crystallogr., A42, 44

1989, J. Am. Ceram. Soc., 72, 1757, 10.1111/j.1151-2916.1989.tb06322.x

1999, Phys. Rev. B, 60, 14485, 10.1103/PhysRevB.60.14485