Ferrocene in agriculture: from agrochemicals and soil remediation to selective chemosensors
Tóm tắt
Ferrocene and derivatives find numerous applications in agriculture, both as agrochemicals and as catalysts, for selective synthesis of agrochemicals. Moreover, they can be used as surfactants in soil remediation and as selective colorimetric and electrochemical chemosensors for analytes of interest in agriculture.
Tài liệu tham khảo
Togni A, Hayashi T (1995) Ferrocenes: homogeneous catalysis, organic synthesis, material science. VCH, Weinheim, Germany
Stepnicka P (2008) Ferrocenes: ligands, materials and biomolecules. Wiley, Chichester, UK
van Staveren DR, Metzler-Nolte N (2004) Bioorganometallic chemistry of ferrocene. Chem Rev 104:5931–85
Divakar MA, Sudhamani V, Shanmugam S, Muneeswaran T, Tamilzhalagan S, Ramakritinan M, Ganesan K (2015) Facile synthesis and characterization of bioorganometallic compounds and their biological activity contour against human pathogens. RSC Adv 5:8362–70
House Resolution-1627 Food Quality Protection Act (FQPA) of 1996. [http://www.epa.gov/pesticides/regulating/laws/fqpa/]
Dayan FE, Cantrell CL, Duke SO (2009) Natural products in crop protection. Bioorg Med Chem 17:4022–34
Lamberth C (2009) Alkyne chemistry in crop protection. Bioorg Med Chem 17:4047–63
Lamberth C (2010) Amino acid chemistry in crop protection. Tetrahedron 66:7239–56
Fang J-X, Jin Z, Li Z-M, Liu W (2003) Preparation, characterization and biological activities of novel ferrocenyl-substituted azaheterocycle compounds. Appl Organomet Chem 17:145–53
Fang J, Jin Z, Li Z, Liu W (2003) Synthesis, structure and antibacterial activities of novel ferrocenyl containing 1-phenyl-3-ferrocenyl-4-triazolyl-5-aryl-dihydropyrazole derivatives. J Organomet Chem 674:1–9
Jin Z, Huo A, Liu T, Hu Y, Liu J, Fang J (2005) Synthesis, structures and biological activity research of novel ferrocenyl-containing 1H-1,2,4-triazole derivatives. J Organomet Chem 690:1226–32
Jin Z, Hu Y, Huo A, Tao W, Shao L, Liu J, Fang J (2006) Synthesis, characterization, and biological evaluation of novel ferrocene-triadimefon analogues. J Organomet Chem 691:2340–5
Fang J, Jin Z, Hu Y, Tao W, Shao L (2006) Synthesis and evaluation of novel ferrocene-substituted triadimenol analogues. Appl Organomet Chem 20:813–8
Zhong J, Wei L, Yan H, Jianbing L, Ling S, Jianxin F (2006) Synthesis, structure and biological activity of 1-(1-methoxy-1-ferrocenyl-3-arylpropan-2-yl)-1H-1,2,4-triazole derivatives. Front Chem China 3:287–91
Yu H, Shao L, Fang J (2007) Synthesis and biological activity research of novel ferrocenyl-containing thiazole imine derivatives. J Organomet Chem 692:991–6
Liu J, Li L, Dai H, Liu Z, Fang J (2006) Synthesis and biological activities of new 1H-1,2,4-triazole derivatives containing ferrocenyl moiety. J Organomet Chem 691:2686–90
Liu J, Li L, Dai H, Fang J (2008) Synthesis and biological activities of new 1H-1,2,4-triazole alcohol derivatives containing a ferrocenyl moiety. Appl Organomet Chem 22:237–41
Liu J, Dai H, Liu W, Fang J (2008) Synthesis and biological activity of 1H-1,2,4-triazole alcohol derivatives. Synth React Inorg Met-Org Nano-Met Chem 38:647–51
Runqiu H, Qingmin W (2001) Synthesis, spectroscopy and biological activity of novel acylhydrazines containing ferrocenyl moiety. J Organomet Chem 637–639:94–8
Le Goff G, Ouazzani J (2014) Natural hydrazine-containing compounds: Biosynthesis, isolation, biological activities and synthesis. Bioorg Med Chem 22:6529–44
Dou Y-Y, Xie Y-F, Tang L-F (2008) Synthesis, electrochemical properties and fungicidal activity of 1,1′-bis(aroyl)ferrocenes and their derivatives. Appl Organomet Chem 22:25–9
Shisodia SU, Auricchio S, Citterio A, Grassi M, Sebastiano R (2014) New examples of template catalysis based processes: glycerol-like units as efficient promoters for dehydrative nucleophilic substitutions of ferrocenylmethanol. Tetrahedron Lett 55:869–72
Huikai S, Qingmin W, Runqiu H, Heng L, Yonghong L (2002) Synthesis and biological activity of novel cyanoacrylates containing ferrocenyl moiety. J Organomet Chem 655:182–5
Duan X-E, Wei X-H, Tong H-B, Bai S-D, Zhang Y-B, Liu D-S (2011) Ferrocene-modified pyrimidinyl acyl-thiourea derivatives: synthesis, structures and electrochemistry. J Mol Struct 1005:91–9
Xu C, Li H, Wang Z, Lou X, Fu W (2014) Synthesis, characterization, and crystal structures of aryl-substituted ferrocenylpyrimidines by site-selective stepwise couplings of 2,4,6-trichloropyrimidine. Monatsh Chem 145:767–73
Pluta R, Nikolaienko P, Rueping M (2014) Direct catalytic trifluoromethylthiolation of boronic acids and alkynes employing electrophilic shelf-stable N-(trifluoromethylthio)phthalimide. Angew Chem Int Ed 53:1650–3
Li F, Ma J, Lu L, Bao X, Tang W (2015) Combination of gold and iridium catalysts for the synthesis of N-alkylated amides from nitriles and alcohols. Catal Sci Technol 5:1953–60
Blaser H-U, Spindler F (1997) Enantioselective catalysis for agrochemicals. The case histories of (S)-metolachlor, (R)-metalaxyl and clozylacon. Top Catal 4:275–82
Blaser H-U, Brieden W, Pugin B, Spindler F, Studer M, Togni A (2002) Solvias Josiphos ligands: from discovery to technical applications. Top Catal 19:3–16
Blaser H-U, Pugin B, Spindler F (2005) Progress in enantioselective catalysis assessed from an industrial point of view. J Mol Catal A Chem 231:1–20
Blaser H-U, Pugin B, Spindler F, Thommen M (2007) From a chiral switch to a ligand portfolio for asymmetric catalysis. Acc Chem Res 40:1240–50
Barbaro P, Bianchini C, Giambastiani G, Parisel SL (2004) Progress in stereoselective catalysis by metal complexes with chiral ferrocenyl phosphines. Coord Chem Rev 248:2131–50
Colacot TJ (2003) A concise update on the applications of chiral ferrocenyl phosphines in homogeneous catalysis leading to organic synthesis. Chem Rev 103:3101–18
Hartwig JF (2008) Evolution of a fourth generation catalyst for the amination and hioetherification of aryl halides. Acc Chem Res 41:1534–44
Kollár L, Keglevich G (2010) P-heterocycles as ligands in homogeneous catalytic reactions. Chem Rev 110:4257–302
Kolodiazhnyi OI (2012) Recent developments in the asymmetric synthesis of P-chiral phosphorus compounds. Tetrahedron Asymmetry 23:1–46
Schaarschmidt D, Lang H (2013) Selective syntheses of planar-chiral ferrocenes. Organometallics 32:5668–704
Baratta W, Barbato C, Magnolia S, Siega K, Rigo P (2010) Chiral and nonchiral [OsX2(diphosphane)(diamine)] (X: Cl, OCH2CF3) complexes for fast hydrogenation of carbonyl compounds. Chem Eur J 16:3201–6
Buergler JF, Niedermann K, Togni A (2012) P-stereogenic trifluoromethyl derivatives of Josiphos: synthesis, coordination properties, and applications in asymmetric catalysis. Chem Eur J 18:632–40
Toma S, Csizmadiova J, Meciarova M, Sebesta R (2014) Ferrocene phosphane-heteroatom/carbon bidentate ligands in asymmetric catalysis. Dalton Trans 43:16557–79
Yao W, Chen M, Liu X, Jiang R, Zhang S, Chen W (2014) Ferrocene as a scaffold for effective bifunctional amine-thiourea organocatalysts. Catal Sci Technol 4:1726–9
Gao D-W, Yin Q, Gu Q, You S-L (2014) Enantioselective synthesis of planar chiral ferrocenes via Pd(0)-catalyzed intramolecular direct C-H bond arylation. J Am Chem Soc 136:4841–4
Wang W, Shen H, Wan X-L, Chen Q-Y, Guo Y (2014) Enantioselective Pd-catalyzed allylation of acyclic α-fluorinated ketones. J Org Chem 79:6347–53
Moyo F, Tandlich R, Wilhelmi BS, Balaz S (2014) Sorption of hydrophobic organic compounds on natural sorbents and organoclays from aqueous and non-aqueous solutions: a mini-review. Int J Environ Res Public Health 11:5020–48
Hofstetter TB, Schwarzenbach RP, Haderlein SB (2003) Reactivity of Fe(II) species associated with clay minerals. Environ Sci Technol 37:519–28
Fruchter J (2002) In situ treatment of chromium contaminated groundwater. Environ Sci Technol 36:464A–72
Mao X, Jiang R, Xiao W, Yu J (2015) Use of surfactants for the remediation of contaminated soils: a review. J Hazard Mater 285:419–35
Wei Y, Liang X, Lin W, Guo C, Dang Z (2015) Clay mineral dependent desorption of pyrene from soils by single and mixed anionic–nonionic surfactants. Chem Eng J 264:807–14
Chong Z-Y, Liao X-Y, Yan X-L, Sun L, Zhao D, Liang T (2014) Enhanced desorption of PAHs from manufactured Gas plant soils using different types of surfactants. Pedosphere 24:209–19
Panda M (2013) Kabir-ud-Din: solubilization of polycyclic aromatic hydrocarbons by gemini-conventional mixed surfactant systems. J Mol Liquids 187:106–13
Zhou W, Wang X, Chen C, Zhu L (2013) Removal of polycyclic aromatic hydrocarbons from surfactant solutions by selective sorption with organo-bentonite. Chem Eng J 233:251–7
Swearingen C, Wu J, Stucki J, Fitch A (2004) Use of ferrocenyl surfactants of varying chain lengths to study electron transfer reactions in native montmorillonite clay. Environ Sci Technol 38:5598–603
Li Y, Tian S, Mo H, Ning P (2011) Reversibly enhanced aqueous solubilization of volatile organic compounds using a redox-reversible surfactant. J Environ Sci 23:1486–90
Klein AR, Silvester E, Hogan CF (2014) Mediated electron transfer between FeII adsorbed onto hydrous ferric oxide and a working electrode. Environ Sci Technol 48:10835–42
Afzali D, Karimi-Malel H, Khalilzadeh MA (2011) Sensitive and selective determination of phenylhydrazine in the presence of hydrazine at a ferrocene-modified carbon nano tube paste electrode. Environ Chem Lett 9:375–81
Qing G-Y, Sun T-L, Wang F, He Y-B, Yang X: Chromogenic chemosensors for N-acetylaspartate based on chiral ferrocene-bearing thiourea derivatives. Eur J Org Chem 2009, 841–849 and references therein.
Zapata F, Caballero A, Espinosa A, Tárraga A, Molina P (2009) Imidazole-annelated ferrocene derivatives as highly selective and sensitive multichannel chemical probes for Pb(II) cations. J Org Chem 74:4787–96. and references therein
Zapata F, Caballero A, Espinosa A, Tárraga A, Molina P (2008) Cation coordination induced modulation of the anion sensing properties of a ferrocene-imidazophenanthroline dyad: multichannel recognition from phosphate-related to chloride anion. J Org Chem 73:4034–44
Cao Q-Y, Lee MH, Zhang JF, Ren WX, Kim JS (2011) Ferrocene-based novel electrochemical chemodosimeter for mercury ion recognition. Tetrahedron Lett 52:2786–9
Uahengo V, Xiong B, Zhao P, Zhang Y, Cai P, Hu K, Cheng G (2014) Three-channel ferrocene-based chemosensors for Cu(II) and Hg(II) in aqueous environments. Sens Actuators B 190:937–45