Hình học fermion và sự chuẩn hóa lý thuyết trường hiệu quả của Mô hình chuẩn

Journal of High Energy Physics - Tập 2023 - Trang 1-31 - 2023
Benoît Assi1, Andreas Helset2, Aneesh V. Manohar3, Julie Pagès3, Chia-Hsien Shen3
1Fermi National Accelerator Laboratory, Batavia, USA
2Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, USA
3Physics Department, University of California, San Diego, La Jolla, USA

Tóm tắt

Hình học của không gian trường chi phối các biên độ tán xạ trên-cạnh. Chúng tôi xây dựng một mô tả hình học của các lý thuyết trường hiệu quả, mở rộng các kết quả trước đây đối với các hạt vô hướng và trường gauge cho các fermion. Hình học không gian trường tổ chức lại và đơn giản hóa việc tính toán các hiệu chỉnh vòng lượng tử. Sử dụng khung hình học này, chúng tôi tính toán các đóng góp của vòng fermion vào các phương trình nhóm chuẩn hóa cho các toán tử boson trong Lý thuyết Trường Hiệu quả của Mô hình chuẩn lên tới chiều khối lượng tám.

Từ khóa

#Hình học trường #fermion #hiệu chỉnh vòng lượng tử #phương trình nhóm chuẩn hóa #Mô hình chuẩn #lý thuyết trường hiệu quả.

Tài liệu tham khảo

J.S.R. Chisholm, Change of variables in quantum field theories, Nucl. Phys. 26 (1961) 469 [INSPIRE]. S. Kamefuchi, L. O’Raifeartaigh and A. Salam, Change of variables and equivalence theorems in quantum field theories, Nucl. Phys. 28 (1961) 529 [INSPIRE]. H.D. Politzer, Power corrections at short distances, Nucl. Phys. B 172 (1980) 349 [INSPIRE]. C. Arzt, Reduced effective Lagrangians, Phys. Lett. B 342 (1995) 189 [hep-ph/9304230] [INSPIRE]. K. Meetz, Realization of chiral symmetry in a curved isospin space, J. Math. Phys. 10 (1969) 589 [INSPIRE]. J. Honerkamp and K. Meetz, Chiral-invariant perturbation theory, Phys. Rev. D 3 (1971) 1996 [INSPIRE]. J. Honerkamp, Chiral multiloops, Nucl. Phys. B 36 (1972) 130 [INSPIRE]. D.V. Volkov, Phenomenological lagrangians, Sov. J. Part. Nucl. 4 (1973) 1. C. Cheung, A. Helset and J. Parra-Martinez, Geometric soft theorems, JHEP 04 (2022) 011 [arXiv:2111.03045] [INSPIRE]. R. Alonso, E.E. Jenkins and A.V. Manohar, A geometric formulation of Higgs effective field theory: measuring the curvature of scalar field space, Phys. Lett. B 754 (2016) 335 [arXiv:1511.00724] [INSPIRE]. R. Alonso, E.E. Jenkins and A.V. Manohar, Geometry of the scalar sector, JHEP 08 (2016) 101 [arXiv:1605.03602] [INSPIRE]. R. Alonso, K. Kanshin and S. Saa, Renormalization group evolution of Higgs effective field theory, Phys. Rev. D 97 (2018) 035010 [arXiv:1710.06848] [INSPIRE]. A. Helset, M. Paraskevas and M. Trott, Gauge fixing the standard model effective field theory, Phys. Rev. Lett. 120 (2018) 251801 [arXiv:1803.08001] [INSPIRE]. A. Helset, A. Martin and M. Trott, The geometric standard model effective field theory, JHEP 03 (2020) 163 [arXiv:2001.01453] [INSPIRE]. C. Hays, A. Helset, A. Martin and M. Trott, Exact SMEFT formulation and expansion to \( \mathcal{O} \)(v4/Λ4), JHEP 11 (2020) 087 [arXiv:2007.00565] [INSPIRE]. T. Cohen, N. Craig, X. Lu and D. Sutherland, Is SMEFT enough?, JHEP 03 (2021) 237 [arXiv:2008.08597] [INSPIRE]. T. Corbett, A. Helset, A. Martin and M. Trott, EWPD in the SMEFT to dimension eight, JHEP 06 (2021) 076 [arXiv:2102.02819] [INSPIRE]. T. Corbett, A. Martin and M. Trott, Consistent higher order σ(\( \mathcal{GG} \) → h), Γ(h → \( \mathcal{GG} \)) and Γ(h → γγ) in geoSMEFT, JHEP 12 (2021) 147 [arXiv:2107.07470] [INSPIRE]. T. Cohen, N. Craig, X. Lu and D. Sutherland, Unitarity violation and the geometry of Higgs EFTs, JHEP 12 (2021) 003 [arXiv:2108.03240] [INSPIRE]. A. Martin and M. Trott, More accurate σ(\( \mathcal{GG} \) → h), Γ(h → \( \mathcal{GG} \), \( \mathcal{AA} \), \( \overline{\Psi}\Psi \)) and Higgs width results via the geoSMEFT, arXiv:2305.05879 [INSPIRE]. V. Gattus and A. Pilaftsis, Minimal supergeometric quantum field theories, Phys. Lett. B 846 (2023) 138234 [arXiv:2307.01126] [INSPIRE]. K. Finn, S. Karamitsos and A. Pilaftsis, Frame covariant formalism for fermionic theories, Eur. Phys. J. C 81 (2021) 572 [arXiv:2006.05831] [INSPIRE]. C. Cheung, A. Helset and J. Parra-Martinez, Geometry-kinematics duality, Phys. Rev. D 106 (2022) 045016 [arXiv:2202.06972] [INSPIRE]. T. Cohen, N. Craig, X. Lu and D. Sutherland, On-shell covariance of quantum field theory amplitudes, Phys. Rev. Lett. 130 (2023) 041603 [arXiv:2202.06965] [INSPIRE]. A. Helset, E.E. Jenkins and A.V. Manohar, Geometry in scattering amplitudes, Phys. Rev. D 106 (2022) 116018 [arXiv:2210.08000] [INSPIRE]. N. Craig, Y.-T. Lee, X. Lu and D. Sutherland, Effective field theories as Lagrange spaces, arXiv:2305.09722 [INSPIRE]. A. Helset, E.E. Jenkins and A.V. Manohar, Renormalization of the standard model effective field theory from geometry, JHEP 02 (2023) 063 [arXiv:2212.03253] [INSPIRE]. E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the standard model dimension six operators. Part I. Formalism and lambda dependence, JHEP 10 (2013) 087 [arXiv:1308.2627] [INSPIRE]. E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the standard model dimension six operators. Part II. Yukawa dependence, JHEP 01 (2014) 035 [arXiv:1310.4838] [INSPIRE]. R. Alonso, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the standard model dimension six operators. Part III. Gauge coupling dependence and phenomenology, JHEP 04 (2014) 159 [arXiv:1312.2014] [INSPIRE]. M. Chala, G. Guedes, M. Ramos and J. Santiago, Towards the renormalisation of the standard model effective field theory to dimension eight: bosonic interactions I, SciPost Phys. 11 (2021) 065 [arXiv:2106.05291] [INSPIRE]. S. Das Bakshi, M. Chala, Á. Díaz-Carmona and G. Guedes, Towards the renormalisation of the standard model effective field theory to dimension eight: bosonic interactions II, Eur. Phys. J. Plus 137 (2022) 973 [arXiv:2205.03301] [INSPIRE]. M. Accettulli Huber and S. De Angelis, Standard model EFTs via on-shell methods, JHEP 11 (2021) 221 [arXiv:2108.03669] [INSPIRE]. S. Das Bakshi and Á. Díaz-Carmona, Renormalisation of SMEFT bosonic interactions up to dimension eight by LNV operators, JHEP 06 (2023) 123 [arXiv:2301.07151] [INSPIRE]. E.E. Jenkins, A.V. Manohar and P. Stoffer, Low-energy effective field theory below the electroweak scale: operators and matching, JHEP 03 (2018) 016 [arXiv:1709.04486] [INSPIRE]. E.E. Jenkins, A.V. Manohar and P. Stoffer, Low-energy effective field theory below the electroweak scale: anomalous dimensions, JHEP 01 (2018) 084 [arXiv:1711.05270] [INSPIRE]. L. Alvarez-Gaume and D.Z. Freedman, Geometrical structure and ultraviolet finiteness in the supersymmetric sigma model, Commun. Math. Phys. 80 (1981) 443 [INSPIRE]. R. Nagai, M. Tanabashi, K. Tsumura and Y. Uchida, Scalar and fermion on-shell amplitudes in generalized Higgs effective field theory, Phys. Rev. D 104 (2021) 015001 [arXiv:2102.08519] [INSPIRE]. B.S. DeWitt, Supermanifolds, Cambridge University Press, Cambridge, U.K. (2012) [https://doi.org/10.1017/CBO9780511564000] [INSPIRE]. A. Rogers, Supermanifolds: theory and applications, World Scientific, Singapore (2007). R.L. Arnowitt and P. Nath, Riemannian geometry in spaces with Grassmann coordinates, Gen. Rel. Grav. 7 (1976) 89 [INSPIRE]. G. ’t Hooft, An algorithm for the poles at dimension four in the dimensional regularization procedure, Nucl. Phys. B 62 (1973) 444 [INSPIRE]. H. Neufeld, J. Gasser and G. Ecker, The one loop functional as a Berezinian, Phys. Lett. B 438 (1998) 106 [hep-ph/9806436] [INSPIRE]. B. Henning, X. Lu and H. Murayama, One-loop matching and running with covariant derivative expansion, JHEP 01 (2018) 123 [arXiv:1604.01019] [INSPIRE]. G. Buchalla et al., Complete one-loop renormalization of the Higgs-electroweak chiral Lagrangian, Nucl. Phys. B 928 (2018) 93 [arXiv:1710.06412] [INSPIRE]. G. Buchalla, A. Celis, C. Krause and J.-N. Toelstede, Master formula for one-loop renormalization of bosonic SMEFT operators, arXiv:1904.07840 [INSPIRE]. B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-six terms in the standard model lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE]. C.W. Murphy, Dimension-8 operators in the standard model effective field theory, JHEP 10 (2020) 174 [arXiv:2005.00059] [INSPIRE]. H.-L. Li et al., Complete set of dimension-eight operators in the standard model effective field theory, Phys. Rev. D 104 (2021) 015026 [arXiv:2005.00008] [INSPIRE]. R. Alonso, E.E. Jenkins and A.V. Manohar, Holomorphy without supersymmetry in the standard model effective field theory, Phys. Lett. B 739 (2014) 95 [arXiv:1409.0868] [INSPIRE]. C. Cheung and C.-H. Shen, Nonrenormalization theorems without supersymmetry, Phys. Rev. Lett. 115 (2015) 071601 [arXiv:1505.01844] [INSPIRE]. E. Fermi, Trends to a theory of beta radiation (in Italian), Nuovo Cim. 11 (1934) 1 [INSPIRE]. W. Dekens and P. Stoffer, Low-energy effective field theory below the electroweak scale: matching at one loop, JHEP 10 (2019) 197 [Erratum ibid. 11 (2022) 148] [arXiv:1908.05295] [INSPIRE].