Fermentation process monitoring of broad bean paste quality by NIR combined with chemometrics
Tóm tắt
Near-infrared (NIR) spectroscopy coupled with chemometric methods were employed for quantitatively analyzing broad bean paste quality during fermentation. The quality parameters including the contents of moisture, total acid (TA), and amino acid nitrogen (AAN) were determined by traditional chemical methods as reference. Savitzky–Golay first derivative (FD), Savitzky–Golay second derivative, Savitzky–Golay smoothing, standard normal variate, and multiplicative scatter correction (MSC) were employed to preprocess the raw spectrums. Furthermore, the pretreated spectrums were selected by successive projections algorithm for dimension reducing. To investigate the quantitative relationship between quality parameters and spectrums, linear models of partial least squares regression and multiple linear regression, as well as non-linear models of random forest, gradient boosting decision tree, and adaptive boosting (AdaBoost) were introduced for regression modeling. The results revealed that the MSC was the best preprocessing method for the NIR spectrums of broad bean paste. Meanwhile, compared with linear modeling, non-linear models had better performances for the prediction of the parameters. In addition, among all the three non-linear methods, AdaBoost provided the optimal regression results with satisfactory prediction statistics for moisture (Rp2 = 0.963, RMSEP = 0.416), TA (Rp2 = 0.917, RMSEP = 0.030) and AAN (Rp2 = 0.908, RMSEP = 0.011) contents. This study demonstrated that NIR spectroscopy could be applied as a rapid and effective tool for quantitatively analyzing the quality parameters of broad bean paste during the fermentation process.
Tài liệu tham khảo
Y. Jia, C.T. Niu, X. Xu, F.Y. Zheng, C.F. Liu, J.J. Wang, Z.M. Lu, Z.H. Xu, Q. Li, Food Res. Int. 148, 110533 (2021). https://doi.org/10.1016/j.foodres.2021.110533
I. Aprodu, I. Vasilean, C. Muntenita, L. Patrascu, Food Chem. 293, 520–528 (2019). https://doi.org/10.1016/j.foodchem.2019.05.007
Y. Yang, C. Niu, W. Shan, F. Zheng, C. Liu, J. Wang, Q. Li, Food Chem. 351, 128454 (2021). https://doi.org/10.1016/j.foodchem.2020.128454
P. Liu, Q. Xiang, W. Sun, X. Wang, J. Lin, Z. Che, P. Ma, Food Res. Int. 137, 109513 (2020). https://doi.org/10.1016/j.foodres.2020.109513
JLd.P. Teixeira, ETd.S. Caramês, D.P. Baptista, M.L. Gigante, J.A.L. Pallone, J. Food Compos. Anal. (2021). https://doi.org/10.1016/j.jfca.2020.103712
T.H. Wu, I.C. Tung, H.C. Hsu, C.C. Kuo, J.H. Chang, S. Chen, C.Y. Tsai, Y.K. Chuang, Sensors (Basel) (2020). https://doi.org/10.3390/s20195451
J. Xu, F. Huang, Y. Li, Z. Chen, Y. Wang, Czech J. Food Sci. 33, 518–522 (2016). https://doi.org/10.17221/229/2015-cjfs
R. Sheng, W. Cheng, H. Li, S. Ali, A. Akomeah Agyekum, Q. Chen, Postharvest Biol. Technol. (2019). https://doi.org/10.1016/j.postharvbio.2019.110952
Q. Ouyang, L. Wang, M. Zareef, Q. Chen, Z. Guo, H. Li, Microchem. J. (2020). https://doi.org/10.1016/j.microc.2020.105020
M. Zareef, M. Arslan, M. Mehedi Hassan, S. Ali, Q. Ouyang, H. Li, X. Wu, M. Muhammad Hashim, S. Javaria, Q. Chen, Food Chem. 359, 129928 (2021). https://doi.org/10.1016/j.foodchem.2021.129928
C. Alamprese, S. Grassi, A. Tugnolo, E. Casiraghi, Food Control (2021). https://doi.org/10.1016/j.foodcont.2020.107755
D.P. Aykas, A. Menevseoglu, Food Control (2021). https://doi.org/10.1016/j.foodcont.2020.107670
E. Bona, I. Marquetti, J.V. Link, G.Y.F. Makimori, V. da Costa Arca, A.L. Guimarães Lemes, J.M.G. Ferreira, M.B. dos Santos Scholz, P. Valderrama, R.J. Poppi, LWT Food Sci. Technol. 76, 330–336 (2017). https://doi.org/10.1016/j.lwt.2016.04.048
G.B. Rossi, V.A. Lozano, Lwt (2020). https://doi.org/10.1016/j.lwt.2020.109290
R. Temizkan, A. Can, M.A. Dogan, M. Mortas, H. Ayvaz, Int. Dairy J. (2020). https://doi.org/10.1016/j.idairyj.2020.104795
T.F. Vieira, G.Y.F. Makimori, M.B. dos Santos Scholz, A.A.F. Zielinski, E. Bona, Food Anal. Methods 13, 97–107 (2019). https://doi.org/10.1007/s12161-019-01520-9
M. Zhang, B. Zhang, H. Li, M. Shen, S. Tian, H. Zhang, X. Ren, L. Xing, J. Zhao, Infrared Phys. Technol. (2020). https://doi.org/10.1016/j.infrared.2020.103529
L. Hu, C. Yin, S. Ma, Z. Liu, Food Anal. Methods 12, 633–643 (2018). https://doi.org/10.1007/s12161-018-01407-1
S. Fan, T. Pan, G. Li, Int. J. Food Eng. (2020). https://doi.org/10.1515/ijfe-2020-0127
S. Wang, X. Liu, T. Tamura, N. Kyouno, H. Zhang, J.Y. Chen, Anal. Lett. 54, 2304–2314 (2020). https://doi.org/10.1080/00032719.2020.1858092
S. Ji-yong, Z. Xiao-bo, H. Xiao-wei, Z. Jie-wen, L. Yanxiao, H. Limin, Z. Jianchun, Food Chem. 138, 192–199 (2013). https://doi.org/10.1016/j.foodchem.2012.10.060
L. Zhang, Z. Che, W. Xu, P. Yue, R. Li, Y. Li, X. Pei, P. Zeng, Food Microbiol. 86, 103342 (2020). https://doi.org/10.1016/j.fm.2019.103342
X. Bian, K. Wang, E. Tan, P. Diwu, F. Zhang, Y. Guo, Chemom. Intell. Lab. Syst. (2020). https://doi.org/10.1016/j.chemolab.2019.103916
J. Fernandez-Novales, T. Garde-Cerdan, J. Tardaguila, G. Gutierrez-Gamboa, E.P. Perez-Alvarez, M.P. Diago, Talanta 199, 244–253 (2019). https://doi.org/10.1016/j.talanta.2019.02.037
J.W. Hao, N.D. Chen, C.W. Chen, F.C. Zhu, D.L. Qiao, Y.J. Zang, J. Dai, X.W. Song, H. Chen, J Pharm Biomed Anal. 151, 331–338 (2018). https://doi.org/10.1016/j.jpba.2018.01.027
Y. Liu, Y. Liu, Y. Chen, Y. Zhang, T. Shi, J. Wang, Y. Hong, T. Fei, Y. Zhang, Remote Sens. (2019). https://doi.org/10.3390/rs11040450
B. Lu, N. Liu, H. Li, K. Yang, C. Hu, X. Wang, Z. Li, Z. Shen, X. Tang, Soil Tillage Res. 191, 266–274 (2019). https://doi.org/10.1016/j.still.2019.04.015
L. Wang, X. Wang, X. Liu, Y. Wang, X. Ren, Y. Dong, R. Song, J. Ma, Q. Fan, J. Wei et al., Spectrochim. Acta A Mol. Biomol. Spectrosc. 254, 119626 (2021). https://doi.org/10.1016/j.saa.2021.119626
Q. Ouyang, Q. Chen, J. Zhao, H. Lin, Food Bioprocess Technol. 6, 2486–2493 (2012). https://doi.org/10.1007/s11947-012-0936-0
Y. Lu, X. Li, W. Li, T. Shen, Z. He, M. Zhang, H. Zhang, Y. Sun, F. Liu, Spectrochim. Acta A Mol. Biomol. Spectrosc. 257, 119759 (2021). https://doi.org/10.1016/j.saa.2021.119759
J. Vestia, J.M. Barroso, H. Ferreira, L. Gaspar, A.E. Rato, Food Chem. 276, 71–76 (2019). https://doi.org/10.1016/j.foodchem.2018.09.116
J.D. Rabanera, J.D. Guzman, K.F. Yaptenco, J. Food Meas. Charact. 15, 3069–3078 (2021). https://doi.org/10.1007/s11694-021-00894-x
X. Li, Y. Wei, J. Xu, X. Feng, F. Wu, R. Zhou, J. Jin, K. Xu, X. Yu, Y. He, Postharvest Biol. Technol. 143, 112–118 (2018). https://doi.org/10.1016/j.postharvbio.2018.05.003
T.K. Ho, Proceedings of the 3rd International Conference on Document Analysis and Recognition, pp. 278–282 (1995)
L. Breiman, Mach. Learn. 45, 5–32 (2001)
F.B. de Santana, W. Borges Neto, R.J. Poppi, Food Chem. 293, 323–332 (2019). https://doi.org/10.1016/j.foodchem.2019.04.073
Y. Zhou, Z. Zuo, F. Xu, Y. Wang, Spectrochim. Acta A Mol. Biomol. Spectrosc. 226, 117619 (2020). https://doi.org/10.1016/j.saa.2019.117619
Z. Zhang, C. Jung, IEEE Trans. Neural Netw. Learn. Syst. 32, 3156–3167 (2021). https://doi.org/10.1109/TNNLS.2020.3009776
K.K. Gupta, K. Kalita, R.K. Ghadai, M. Ramachandran, X.-Z. Gao, Energies (2021). https://doi.org/10.3390/en14041122
L.V. Utkin, A. Wiencierz, Inf. Sci. 317, 315–328 (2015). https://doi.org/10.1016/j.ins.2015.04.037
Z. Wang, X. Tian, S. Fan, C. Zhang, J. Li, Infrared Phys. Technol. (2021). https://doi.org/10.1016/j.infrared.2020.103596
Y. Huang, W. Dong, A. Sanaeifar, X. Wang, W. Luo, B. Zhan, X. Liu, R. Li, H. Zhang, X. Li, Comput. Electron. Agric. (2020). https://doi.org/10.1016/j.compag.2020.105388
C.A. Esquerre, E.M. Achata, M. García-Vaquero, Z. Zhang, B.K. Tiwari, C.P. O’Donnell, Lwt (2020). https://doi.org/10.1016/j.lwt.2020.109761
R.A. Sedjoah, Y. Ma, M. Xiong, H. Yan, Spectrochim. Acta A Mol. Biomol. Spectrosc. 260, 119938 (2021). https://doi.org/10.1016/j.saa.2021.119938
R. Rinnan, Å. Rinnan, Soil Biol. Biochem. 39, 1664–1673 (2007). https://doi.org/10.1016/j.soilbio.2007.01.022
Z. Guo, A.O. Barimah, L. Yin, Q. Chen, J. Shi, H.R. El-Seedi, X. Zou, Food Chem. 353, 129372 (2021). https://doi.org/10.1016/j.foodchem.2021.129372
S. Zhang, Z. Tan, J. Liu, Z. Xu, Z. Du, Spectrochim. Acta A Mol. Biomol. Spectrosc. 227, 117551 (2020). https://doi.org/10.1016/j.saa.2019.117551
R. Barzin, R. Pathak, H. Lotfi, J. Varco, G.C. Bora, Remote Sens. (2020). https://doi.org/10.3390/rs12152392
J. Wang, W. Xue, X. Shi, Y. Xu, C. Dong, Sensors (Basel) (2021). https://doi.org/10.3390/s21186260