Femtosecond solvation dynamics in acetonitrile: Observation of the inertial contribution to the solvent response

Journal of Chemical Physics - Tập 95 Số 6 - Trang 4715-4718 - 1991
Sandra J. Rosenthal1, X. Sunney Xie1, Meirong Du1, Graham R. Fleming1
1Department of Chemistry and the James Franck Institute, The University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637

Tóm tắt

The solvation dynamics of acetonitrile were characterized by a time resolved fluorescence shift measurement determined via the fluorescence upconversion technique. The solvation response is clearly two part in character. The fast initial relaxation accounts for ∼80% of the amplitude and is well fit by a Gaussian of 120 fs FWHM, giving a decay time of 70 fs. The slower tail is exponential with a decay time of ∼200 fs. Comparison of the results to molecular dynamics simulations performed by Maroncelli [J. Chem. Phys. 94, 2085 (1991)] reveal the fast initial part of the solvent response arises from small amplitude inertial rotational motion of molecules in the first solvation shell. The implications of a large amplitude, rapid inertial Gaussian component in the solvent response for theoretical descriptions of chemical reaction dynamics in solution are discussed.

Từ khóa


Tài liệu tham khảo

1987, J. Chem. Phys., 87, 2090, 10.1063/1.453184

1988, J. Chem. Phys., 88, 818, 10.1063/1.454160

1990, Adv. Photochem., 15, 1, 10.1002/9780470133453.ch1

1990, Acc. Chem. Res., 23, 294, 10.1021/ar00177a005

1988, J. Chem. Phys., 89, 908, 10.1063/1.455214

1989, Science, 243, 1674, 10.1126/science.243.4899.1674

1990, Physics Today, 43, 36

1989, J. Phys. Chem., 91, 2869, 10.1063/1.456957

1986, J. Phys. Chem., 90, 3701, 10.1021/j100407a044

1990, J. Phys. Chem., 94, 1715, 10.1021/j100368a001

1989, J. Phys. Chem., 93, 6261, 10.1021/j100354a001

1990, Adv. Photochem., 15, 1, 10.1002/9780470133453.ch1

1990, Chem. Phys., 81, 149

1988, J. Chem. Phys., 89, 5044, 10.1063/1.455649

1991, J. Chem. Phys., 94, 2085

1991, J. Chem. Phys., 94, 5961, 10.1063/1.460431

1991, J. Phys. Chem., 95, 2116, 10.1021/j100159a007

1990, J. Opt. Soc. Am. B, 7, 1521, 10.1364/JOSAB.7.001521

1989, J. Chem. Phys., 90, 151, 10.1063/1.456520

1988, J. Chem. Phys., 88, 2372, 10.1063/1.454020

1987, J. Chem. Phys., 86, 1090, 10.1063/1.452249

1984, Chem. Phys., 86, 257, 10.1016/0301-0104(84)80014-2

1990, J. Opt. Soc. Am. B, 7, 1551, 10.1364/JOSAB.7.001551

1988, IEEE J. Quantum Electronics, 24, 276, 10.1109/3.124

1987, J. Chem. Phys., 86, 6221, 10.1063/1.452460

1990, J. Chem. Phys., 92, 3251, 10.1063/1.458615

1990, J. Chem. Phys., 93, 7137, 10.1063/1.459437

1985, J. Phys. Chem., 89, 4181, 10.1021/j100266a008

1989, J. Chem. Phys., 90, 7338, 10.1063/1.456213

1989, J. Phys. Chem., 93, 6996, 10.1021/j100356a023

1987, J. Phys. Chem., 91, 2028, 10.1021/j100292a008

1988, IEEE J. Quantum Electron., QE-24, 443

1987, J. Phys. Chem., 91, 2237, 10.1021/j100293a005

1988, IEEE J. Quantum Electron., QE-24, 443

1990, J. Chem. Phys., 92, 4740, 10.1063/1.457692

1987, Chem. Phys. Lett., 136, 323, 10.1016/0009-2614(87)80260-9

1991, J. Chem. Phys., 94, 3332, 10.1063/1.459756