Feeding ten billion people is possible within four terrestrial planetary boundaries

Nature Sustainability - Tập 3 Số 3 - Trang 200-208
Dieter Gerten1, Vera Heck1, Jonas Jägermeyr1, Benjamin Leon Bodirsky1, Ingo Fetzer2, Mika Jalava3, Matti Kummu3, Wolfgang Lucht4, Johan Rockström1, Sibyll Schaphoff1, Hans Joachim Schellnhuber1
1Potsdam Institute for Climate Impact Research, Member of The Leibniz Association, Potsdam, Germany
2Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden
3Water & Development Research Group, Aalto University, Espoo, Finland
4Geography Department, Humboldt-Universität zu Berlin, Berlin, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Griggs, D. et al. Sustainable development goals for people and planet. Nature 495, 305–307 (2013).

Campbell, B. M. et al. Agriculture production as a major driver of the Earth system exceeding planetary boundaries. Ecol. Soc. 22, 8 (2017).

Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).

Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).

Jägermeyr, J., Pastor, A., Biemans, H. & Gerten, D. Reconciling irrigated food production with environmental flows for sustainable development goals implementation. Nat. Commun. 8, 15900 (2017).

Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl Acad. Sci. USA 108, 20260–20264 (2011).

Rockström, J. et al. Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio 46, 4–17 (2017).

Searchinger, T. et al. Creating a Sustainable Food Future—A Menu of Solutions to Feed Nearly 10 Billion People by 2050 (World Resources Institute, 2018).

Foley, J. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).

Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).

Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987–992 (2018).

Mauser, W. et al. Global biomass production potentials exceed expected future demand without the need for cropland expansion. Nat. Commun. 6, 8946 (2015).

Erb, K.-H. et al. Exploring the biophysical option space for feeding the world without deforestation. Nat. Commun. 7, 11382 (2016).

Jalava, M. et al. Diet change and food loss reduction: what is their combined impact on global water use and scarcity? Earths Future 4, 62–78 (2016).

West, P. C. et al. Leverage points for improving global food security and the environment. Science 345, 325–328 (2014).

Jägermeyr, J. et al. Integrated crop water management might sustainably halve the global food gap. Environ. Res. Lett. 11, 025002 (2016).

Heck, V., Hoff, H., Wirsenius, S., Meyer, C. & Kreft, H. Land use options for staying within the planetary boundaries—synergies and trade-offs between global and local sustainability goals. Global Environ. Change 49, 73–84 (2018).

Kummu, M. et al. Lost food, wasted resources: global food supply chain losses and their impacts on freshwater, cropland, and fertiliser use. Sci. Total Environ. 438, 477–489 (2012).

Kummu, M. et al. Bringing it all together: linking measures to secure nations’ food supply. Curr. Opin. Environ. Sustain. 29, 98–117 (2017).

Conijn, J. G., Bindraban, P. S., Schröder, J. J. & Jongschaap, R. E. E. Can our global food system meet food demand within planetary boundaries? Agric. Ecosyst. Environ. 251, 244–256 (2018).

Henry, R. C. et al. Food supply and bioenergy production within the global cropland planetary boundary. PLoS ONE 13, e0194695 (2018).

Springmann, M. et al. Options for keeping the food system within environmental limits. Nature 562, 519–525 (2018).

Willet, W. et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).

Schaphoff, S. et al. LPJmL4—a dynamic global vegetation model with managed land: part 2—model evaluation. Geosci. Model Dev. 11, 1377–1403 (2018).

Heck, V., Lucht, W., Gerten, D. & Popp, A. Biomass-based negative emissions difficult to reconcile with planetary boundaries. Nat. Clim. Change 8, 151–155 (2018).

Food Security Indicators (FAO, 2019); www.fao.org/economic/ess/ess-fs/ess-fadata

Kahiluoto, H., Kuisma, M., Kuokkanen, A., Mikkilä, M. & Linnanen, L. Taking planetary nutrient boundaries seriously: can we feed the people? Glob. Food Sec. 3, 16–21 (2014).

Rasmussen, L. V. et al. Social-ecological outcomes of agricultural intensification. Nat. Sustain. 1, 275–282 (2018).

Fischer, G. Transforming the global food system. Nature 562, 501–502 (2018).

Fader, M., Gerten, D., Krause, M., Lucht, W. & Cramer, W. Spatial decoupling of agricultural production and consumption: quantifying dependence of countries on food imports due to domestic land and water constraints. Environ. Res. Lett. 8, 014046 (2013).

O’Neill, D. W., Fanning, A. L., Lamb, W. F. & Steinberger, J. K. A good life for all within planetary boundaries. Nat. Sust. 1, 88–95 (2018).

World in Transition: Governing the Marine Heritage (WBGU, 2013).

Nash, K. L. et al. Planetary boundaries for a blue planet. Nat. Ecol. Evol. 1, 1625–1634 (2017).

Newbold, T. et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 353, 288–291 (2016).

Ostberg, S., Schaphoff, S., Lucht, W. & Gerten, D. Three centuries of dual pressure from land use and climate change on the biosphere. Environ. Res. Lett. 10, 044011 (2015).

Fader, M., Rost, S., Müller, C., Bondeau, A. & Gerten, D. Virtual water content of temperate cereals and maize: present and potential future patterns. J. Hydrol. 384, 218–231 (2010).

Pastor, A. V., Ludwig, F., Biemans, H., Hoff, H. & Kabat, P. Accounting for environmental flow requirements in global water assessments. Hydrol. Earth Syst. Sci. 18, 5041–5059 (2014).

Biemans, H. et al. Impact of reservoirs on river discharge and irrigation water supply during the 20th century. Water Resour. Res. 47, W03509 (2011).

Flörke, M. et al. Domestic and industrial water uses of the past 60 years as a mirror of socio-economic development: a global simulation study. Global Environ. Change 23, 144–156 (2013).

de Vries, W., Kros, J., Kroeze, J. C. & Seitzinger, S. P. Assessing planetary and regional nitrogen boundaries related to food security and adverse environmental impacts. Curr. Opin. Environ. Sustain. 5, 392–402 (2013).

Velthof, G. L. & Mosquera, J. Calculation of Nitrous Oxide Emission from Agriculture in the Netherlands: Update of Emission Factors and Leaching Fraction Alterra Report 2251 (Alterra, 2011).

Bouwman, A. F. et al. Global trends and uncertainties in terrestrial denitrification and N2O emissions. Phil. Trans. R. Soc. Lond. 368, 20130112 (2013).

Lamarque, J.-F. et al. Multi-model mean nitrogen and sulfur deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): evaluation of historical and projected future changes. Atmos. Chem. Phys. 13, 7997–8018 (2013).

Vitousek, P. M., Menge, D. N. L., Reed, S. C. & Cleveland, C. C. Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems. Phil. Trans. R. Soc. Lond. 368, 20130119 (2013).

Cleveland, C. C. et al. Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems. Glob. Biogeochem. Cycles 13, 623–645 (1999).

Bodirsky, B. L. et al. N2O emissions of the global agricultural nitrogen cycle—current state and future scenarios. Biogeosciences 9, 4169–4197 (2012).

von Bloh, W. et al. Implementing the nitrogen cycle into the dynamic global vegetation, hydrology, and crop growth model LPJmL (version 5.0). Geosci. Model Dev. 11, 2789–2812 (2018).

Lassaletta, L., Billen, G., Grizzetti, B., Anglade, J. & Garnier, J. 50 year trends in nitrogen use efficiency of world cropping systems: the relationship between yield and nitrogen input to cropland. Environ. Res. Lett. 9, 105011 (2014).

The World Database on Protected Areas (WDPA) (IUCN and UNEP-WCMC, accessed 20 October 2015); www.protectedplanet.net

Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, e1246752 (2014).

Bodirsky, B. L. & Müller, C. Robust relationship between yields and nitrogen inputs indicates three ways to reduce nitrogen pollution. Environ. Res. Lett. 9, 105011 (2014).

Oldeman, L. R., Hakkeling, T. R. & Sombroek, W. G. GLASOD: World Map of Human-Induced Soil Degradation (International Soil Reference and Information Centre, 1991).

Lehner, B. & Döll, P. Development and validation of a global database of lakes, reservoirs and wetlands. J. Hydrol. 296, 1–22 (2004).

Smil, V. Nitrogen in crop production: an account of global flows. Glob. Biogeochem. Cycles 13, 647–662 (1999).

Bodirsky, B. L. et al. Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution. Nat. Commun. 5, 3858 (2014).

Zhang, X. et al. Managing nitrogen for sustainable development. Nature 528, 51–59 (2015).

Closing the Loop—An EU Action Plan for the Circular Economy (EC, 2015).

Diet, Nutrition and the Prevention of Chronic Diseases Technical Report Series 196 (WHO, 2003).

Kummu, M., Ward, P. J., de Moel, H. & Varis, O. Is physical water scarcity a new phenomenon? Global assessment of water shortage over the last two millennia. Environ. Res Lett. 5, 034006 (2010).

Gerten, D. et al. Model output for: “Feeding ten billion people is possible within four terrestrial planetary boundaries” (GFZ Data Services, 2020); https://doi.org/10.5880/PIK.2019.021/