FedAda: Fast-convergent adaptive federated learning in heterogeneous mobile edge computing environment
Tóm tắt
Tài liệu tham khảo
Beutel, D.J., Topal, T., Mathur, A., Qiu, X., Parcollet, T., Lane, N.D.: Flower: A friendly federated learning research framework. arXiv preprint arXiv:2007.14390 (2020)
Konečnỳ, J., McMahan, H.B., Ramage, D., Richtárik, P.: Federated optimization: Distributed machine learning for on-device intelligence. arXiv preprint arXiv:1610.02527 (2016)
Lin, T., Stich, S.U., Patel, K.K., Jaggi, M.: Don’t use large mini-batches, use local sgd. In: International Conference on Learning Representations (2020)
Patel, M.., Naughton, B.., Chan, C.., Sprecher, N.., Abeta, S.., Neal, A., et al.: Mobile-edge computing introductory technical white paper. White Paper, Mobile-edge Computing (MEC) Industry Initiative 29, 854–864 (2014)
Rydning, D.R.J.G.J.: The digitization of the world from edge to core. Framingham: International Data Corporation p. 16 (2018)
Voigt, P., Von dem Bussche, A.: The eu general data protection regulation (gdpr). A Practical Guide, 1st Ed., Cham: Springer International Publishing 10, 3152,676 (2017)
Xie, C., Koyejo, S., Gupta, I.: Asynchronous federated optimization. arXiv preprint arXiv:1903.03934 (2019)