Động lực học vi khuẩn phân và mối liên quan đến tiêu chảy và sức khỏe ở bê sữa

Springer Science and Business Media LLC - Tập 13 - Trang 1-20 - 2022
Hongwei Chen1,2, Yalu Liu1,2, Kailang Huang1,2, Bin Yang1,2, Yuanyuan Zhang1,2, Zhongtang Yu3, Jiakun Wang1,2
1Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
2MoE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, China
3Department of Animal Sciences, The Ohio State University, Columbus, USA

Tóm tắt

Tiêu chảy là nguyên nhân chính gây bệnh tật và tử vong ở bê con, dẫn đến tổn thất kinh tế đáng kể cho các trang trại sữa. Để xác định xem một số vi sinh vật đường ruột có thể có khả năng kháng lại quá trình rối loạn sinh thái trong tiêu chảy ở bê con hay không thông qua việc xác định các mô hình đồng xuất hiện vi sinh vật từ khi sinh ra đến sau cai sữa, chúng tôi đã xem xét sự phát triển động của vi sinh vật đường ruột và tình trạng tiêu chảy bằng cách tiến hành hai thí nghiệm trên động vật, trong đó thí nghiệm đầu tiên có 14 bê sữa Holstein và mẫu phân của chúng được thu thập 18 lần trong 78 ngày từ khi sinh ra đến 15 ngày sau cai sữa; thí nghiệm thứ hai có 43 bê sữa Holstein và mẫu phân của chúng được thu thập hàng ngày từ 8 đến 18 ngày tuổi tương ứng với đỉnh tiêu chảy đầu tiên của thí nghiệm 1. Phân tích metataxonomic của vi khuẩn phân cho thấy sự phát triển của vi sinh vật đường ruột có ba khoảng thời gian tuổi, với sinh ra và cai sữa là các ranh giới phân chia. Hai đỉnh tiêu chảy được quan sát thấy trong quá trình chuyển tiếp giữa ba khoảng thời gian tuổi. Fusobacteriaceae được xác định là một taxon liên quan đến tiêu chảy cả ở giai đoạn đầu và trong quá trình cai sữa, và Clostridium_sensu_stricto_1 là một chi khác gia tăng trong số các bê bị tiêu chảy ở giai đoạn đầu. Ở các bê mới sinh, Prevotella_2 (ASV4 và ASV26), Prevotella_9 (ASV43) và Alloprevotella (ASV14) có mối liên quan tiêu cực với Clostridium_sensu_stricto_1 (ASV48), được xem là taxon chính của mô-đun giai đoạn tiêu chảy. Trong quá trình cai sữa, các Muribaculaceae chưa được phân loại (ASV28 và ASV44), UBA1819 (ASV151), Barnesiella (ASV497) và Ruminococcaceae_UCG-005 (ASV254) được xác định liên quan đến trạng thái không tiêu chảy, và chúng tập hợp trong mô-đun không tiêu chảy của các mô hình đồng xuất hiện, trong đó Muribaculaceae chưa được phân loại (ASV28) và Barnesiella (ASV497) có mối quan hệ tiêu cực trực tiếp với các thành viên của mô-đun tiêu chảy. Tổng thể, kết quả của chúng tôi cho thấy sự thay đổi động lực của vi sinh vật đường ruột ở bê và các tương tác giữa một số vi khuẩn có thể ảnh hưởng đến tiêu chảy ở bê con, và một số loài của Prevotella có thể là vi sinh vật cốt lõi ở cả bê mới sinh và bê sau cai sữa, trong khi các loài của Muribaculaceae có thể là vi sinh vật cốt lõi ở bê sau cai sữa để ngăn ngừa tiêu chảy ở bê con. Một số ASV liên kết với Prevotella_2 (ASV4 và ASV26), Prevotella_9 (ASV43), Alloprevotella (ASV14), Muribaculaceae chưa được phân loại (ASV28 và ASV44), UBA1819 (ASV151), Ruminococcaceae_UCG-005 (ASV254) và Barnesiella (ASV497) có thể là probiotics thích hợp để ngăn ngừa tiêu chảy ở bê trong khi Clostridium_sensu_stricto_1 (ASV48) có thể là dấu hiệu sinh học cho nguy cơ tiêu chảy tại một số trang trại thương mại cụ thể.

Từ khóa

#tiêu chảy #vi khuẩn phân #bê sữa #vi sinh vật đường ruột #sức khỏe động vật

Tài liệu tham khảo

Cho YI, Yoon KJ. An overview of calf diarrhea - infectious etiology, diagnosis, and intervention. J Vet Sci. 2014;15(1):1–17. https://doi.org/10.4142/jvs.2014.15.1.1. Meganck V, Hoflack G, Opsomer G. Advances in prevention and therapy of neonatal dairy calf diarrhoea: a systematical review with emphasis on colostrum management and fluid therapy. Acta Vet Scand. 2014;56(1):75. https://doi.org/10.1186/s13028-014-0075-x. Castro JJ, Gomez A, White BA, Mangian HJ, Loften JR, Drackley JK. Changes in the intestinal bacterial community, short-chain fatty acid profile, and intestinal development of preweaned Holstein calves. 1. Effects of prebiotic supplementation depend on site and age. J Dairy Sci. 2016;99(12):9682–702. https://doi.org/10.3168/jds.2016-11006. Windeyer MC, Leslie KE, Godden SM, Hodgins DC, Lissemore KD, LeBlanc SJ. Factors associated with morbidity, mortality, and growth of dairy heifer calves up to 3 months of age. Prev Vet Med. 2014;113(2):231–40. https://doi.org/10.1016/j.prevetmed.2013.10.019. Aghakeshmiri F, Azizzadeh M, Farzaneh N, Gorjidooz M. Effects of neonatal diarrhea and other conditions on subsequent productive and reproductive performance of heifer calves. Vet Res Commun. 2017;41(2):107–12. https://doi.org/10.1007/s11259-017-9678-9. Heinrichs AJ, Heinrichs BS, Harel O, Rogers GW, Place NT. A prospective study of calf factors affecting age, body size, and body condition score at first calving of holstein dairy heifers. J Dairy Sci. 2005;88(8):2828–35. https://doi.org/10.3168/jds.S0022-0302(05)72963-5. Kargar S, Roshan M, Ghoreishi SM, Akhlaghi A, Kanani M, Abedi Shams-Abadi AR, et al. Extended colostrum feeding for 2 weeks improves growth performance and reduces the susceptibility to diarrhea and pneumonia in neonatal Holstein dairy calves. J Dairy Sci. 2020;103(9):8130–42. https://doi.org/10.3168/jds.2020-18355. Khan MA, Lee HJ, Lee WS, Kim HS, Kim SB, Ki KS, et al. Pre- and postweaning performance of holstein female calves fed milk through step-down and conventional methods. J Dairy Sci. 2007;90(2):876–85. https://doi.org/10.3168/jds.S0022-0302(07)71571-0. Klein-Jöbstl D, Iwersen M, Drillich M. Farm characteristics and calf management practices on dairy farms with and without diarrhea: a case-control study to investigate risk factors for calf diarrhea. J Dairy Sci. 2014;97(8):5110–9. https://doi.org/10.3168/jds.2013-7695. Caballero S, Kim S, Carter RA, Leiner IM, Sušac B, Miller L, et al. Cooperating commensals restore colonization resistance to vancomycin-resistant Enterococcus faecium. Cell Host Microbe. 2017;21(5):592–602. https://doi.org/10.1016/j.chom.2017.04.002. Jacobson A, Lam L, Rajendram M, Tamburini F, Honeycutt J, Pham T, et al. A gut commensal-produced metabolite mediates colonization resistance to Salmonella infection. Cell Host Microbe. 2018;24(2):296–307. https://doi.org/10.1016/j.chom.2018.07.002. Kim YG, Sakamoto K, Seo SU, Pickard JM, Gillilland MG, Pudlo NA, et al. Neonatal acquisition of Clostridia species protects against colonization by bacterial pathogens. Science. 2017;356(6335):315–9. https://doi.org/10.1126/science.aag2029. Wu H, Ma Y, Peng X, Qiu W, Kong L, Ren B, et al. Antibiotic-induced dysbiosis of the rat oral and gut microbiota and resistance to Salmonella. Arch Oral Biol. 2020;114:104730. https://doi.org/10.1016/j.archoralbio.2020.104730. Jang JY, Kim S, Kwon MS, Lee J, Yu DH, Song RH, et al. Rotavirus-mediated alteration of gut microbiota and its correlation with physiological characteristics in neonatal calves. J Microbiol. 2019;57(2):113–21. https://doi.org/10.1007/s12275-019-8549-1. Haag LM, Fischer A, Otto B, Plickert R, Kühl AA, Göbel UB, et al. Intestinal microbiota shifts towards elevated commensal Escherichia coli loads abrogate colonization resistance against Campylobacter jejuni in mice. PLoS ONE. 2012;7(5): e35988. https://doi.org/10.1371/journal.pone.0035988. Kim YH, Nagata R, Ohtani N, Ichijo T, Ikuta K, Sato S. Effects of dietary forage and calf starter diet on ruminal pH and bacteria in Holstein calves during weaning transition. Front Microbiol. 2016;7:1575. https://doi.org/10.3389/fmicb.2016.01575. Meale SJ, Chaucheyras-Durand F, Berends H, Guan LL, Steele MA. From pre- to postweaning: Transformation of the young calf’s gastrointestinal tract. J Dairy Sci. 2017;100(7):5984–95. https://doi.org/10.3168/jds.2016-12474. Karasova D, Crhanova M, Babak V, Jerabek M, Brzobohaty L, Matesova Z, et al. Development of piglet gut microbiota at the time of weaning influences development of postweaning diarrhea - A field study. Res Vet Sci. 2021;135:59–65. https://doi.org/10.1016/j.rvsc.2020.12.022. Ma T, Villot C, Renaud D, Skidmore A, Chevaux E, Steele M, et al. Linking perturbations to temporal changes in diversity, stability, and compositions of neonatal calf gut microbiota: prediction of diarrhea. ISME J. 2020;14(9):2223–35. https://doi.org/10.1038/s41396-020-0678-3. Kim HS, Whon TW, Sung H, Jeong YS, Jung ES, Shin NR, et al. Longitudinal evaluation of fecal microbiota transplantation for ameliorating calf diarrhea and improving growth performance. Nat Commun. 2021;12(1):161. https://doi.org/10.1038/s41467-020-20389-5. Lesmeister KE, Heinrichs AJ. Effects of corn processing on growth characteristics, rumen development, and rumen parameters in neonatal dairy calves. J Dairy Sci. 2004;87(10):3439–50. https://doi.org/10.3168/jds.S0022-0302(04)73479-7. Zoetendal EG, Heilig HG, Klaassens ES, Booijink CC, Kleerebezem M, Smidt H, et al. Isolation of DNA from bacterial samples of the human gastrointestinal tract. Nat Protoc. 2006;1(2):870–3. https://doi.org/10.1038/nprot.2006.142. Yu Y, Lee C, Kim J, Hwang S. Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnol Bioeng. 2005;89(6):670–9. https://doi.org/10.1002/bit.20347. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13(7):581–3. https://doi.org/10.1038/nmeth.3869. Strube ML. RibDif: can individual species be differentiated by 16S sequencing? Bioinform adv. 2021;1(1):vbab020. https://doi.org/10.1093/bioadv/vbab020. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6. https://doi.org/10.1093/nar/gks1219. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73(16):5261–7. https://doi.org/10.1128/AEM.00062-07. McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8(4):e61217. https://doi.org/10.1371/journal.pone.0061217. Nam HM, Srinivasan V, Gillespie BE, Murinda SE, Oliver SP. Application of SYBR green real-time PCR assay for specific detection of Salmonella spp. in dairy farm environmental samples. Int J Food Microbiol. 2005;102(2):161–71. https://doi.org/10.1016/j.ijfoodmicro.2004.12.020. Pinheiro J, Bates D, DebRoy S, Sarkar D, Heisterkamp S, Van Willigen B, et al. nlme: Linear and nonlinear mixed effects models. R package version. 2022;3.1–155. Available from: https://cran.r-project.org/package=nlme. Hothorn T, Bretz F, Westfall P. Simultaneous inference in general parametric models. Biom J. 2008;50(3):346–63. https://doi.org/10.1002/bimj.200810425. Oksanen J, Blanchet FG, Friendly M, Kindt R. vegan: Community ecology package 2019. Available from: https://cran.r-project.org/package=vegan. Breiman L. Random Forests. Mach Learn. 2001;45(1):5–32. https://doi.org/10.1023/A:1010933404324. Liaw A, Wiener M. Classification and regression by randomForest. R News. 2002;2:18–22. Available from: https://cran.r-project.org/doc/Rnews/Rnews_2002-3.pdf Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12(6):R60. https://doi.org/10.1186/gb-2011-12-6-r60. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. https://doi.org/10.1186/s13059-014-0550-8. Friedman J, Alm EJ. Inferring correlation networks from genomic survey data. PLoS Comput Biol. 2012;8(9):e1002687. https://doi.org/10.1371/journal.pcbi.1002687. Csárdi G, Nepusz T. The igraph software package for complex network research. Int J Complex Syst. 2006;1695(5):1–9. Available from: https://igraph.org. Pons P, Latapy M. Computing communities in large networks using random walks. In: Yolum P, Güngör T, Gürgen F, Özturan C, editors. Computer and Information Sciences - ISCIS 2005. Lecture Notes in Computer Science, vol 3733. Berlin Heidelberg: Springer; 2005. p. 284–93. https://doi.org/10.1007/11569596_31. Miura H, Mukai K, Sudo K, Haga S, Suzuki Y, Kobayashi Y, et al. Effect of trehalose supplementation in milk replacer on the incidence of diarrhea and fecal microbiota in preweaned calves. J Anim Sci. 2021;99(1):skab012. https://doi.org/10.1093/jas/skab012. Penati M, Sala G, Biscarini F, Boccardo A, Bronzo V, Castiglioni B, et al. Feeding pre-weaned calves with waste milk containing antibiotic residues is related to a higher incidence of diarrhea and alterations in the fecal microbiota. Front Vet Sci. 2021;8:650150. https://doi.org/10.3389/fvets.2021.650150. Wang D, Du Y, Wang S, You Z, Liu Y. Effects of sodium humate and glutamine combined supplementation on growth performance, diarrhea incidence, blood parameters, and intestinal microflora of weaned calves. Anim Sci J. 2021;92(1): e13584. https://doi.org/10.1111/asj.13584. Fernández-Ciganda S, Fraga M, Zunino P. Probiotic Lactobacilli administration induces changes in the fecal microbiota of preweaned dairy calves. Probiotics Antimicrob Proteins. 2021. https://doi.org/10.1007/s12602-021-09834-z. Wu Y, Wang L, Luo R, Chen H, Nie C, Niu J, et al. Effect of a multispecies probiotic mixture on the growth and incidence of diarrhea, immune function, and fecal microbiota of pre-weaning dairy calves. Front Microbiol. 2021;12:681014. https://doi.org/10.3389/fmicb.2021.681014. Meale SJ, Li SC, Azevedo P, Derakhshani H, DeVries TJ, Plaizier JC, et al. Weaning age influences the severity of gastrointestinal microbiome shifts in dairy calves. Sci Rep. 2017;7(1):198. https://doi.org/10.1038/s41598-017-00223-7. Amin N, Schwarzkopf S, Kinoshita A, Tröscher-Mußotter J, Dänicke S, Camarinha-Silva A, et al. Evolution of rumen and oral microbiota in calves is influenced by age and time of weaning. Anim Microbiome. 2021;3(1):31. https://doi.org/10.1186/s42523-021-00095-3. Kim ET, Lee SJ, Kim TY, Lee HG, Atikur RM, Gu BH, et al. Dynamic changes in fecal microbial communities of neonatal dairy calves by aging and diarrhea. Animals (Basel). 2021;11(4):1113. https://doi.org/10.3390/ani11041113. Klein-Jöbstl D, Quijada NM, Dzieciol M, Feldbacher B, Wagner M, Drillich M, et al. Microbiota of newborn calves and their mothers reveals possible transfer routes for newborn calves’ gastrointestinal microbiota. PLoS ONE. 2019;14(8):e0220554. https://doi.org/10.1371/journal.pone.0220554. Mayer M, Abenthum A, Matthes JM, Kleeberger D, Ege MJ, Holzel C, et al. Development and genetic influence of the rectal bacterial flora of newborn calves. Vet Microbiol. 2012;161(1–2):179–85. https://doi.org/10.1016/j.vetmic.2012.07.023. Podschun R, Ullmann U. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev. 1998;11(4):589–603. https://doi.org/10.1128/CMR.11.4.589. Broberg CA, Palacios M, Miller VL. Klebsiella: a long way to go towards understanding this enigmatic jet-setter. F1000Prime Rep. 2014;6:64. https://doi.org/10.12703/P6-64. Glantz PJ, Jacks TM. A bacteriological and serological study of experimental escherichia coli infection of calves. Can J Comp Med. 1969;33(2):128–33. Komatsu T, Yoshida E, Shigenaga A, Yasuie N, Uchiyama S, Takamura Y, et al. Fatal suppurative meningoencephalitis caused by Klebsiella pneumoniae in two calves. J Vet Med Sci. 2021;83(7):1113–9. https://doi.org/10.1292/jvms.21-0166. Aslan V, Maden M, Erganis O, Birdane FM, Corlu M. Clinical efficacy of florfenicol in the treatment of calf respiratory tract infections. Vet Q. 2002;24(1):35–9. https://doi.org/10.1080/01652176.2002.9695122. Brisson-Noël A, Trieu-Cuot P, Courvalin P. Mechanism of action of spiramycin and other macrolides. J Antimicrob Chemother. 1988;22(Suppl. B):13–23. https://doi.org/10.1093/jac/22.supplement_b.13. Roland S, Ferone R, Harvey RJ, Styles VL, Morrison RW. The characteristics and significance of sulfonamides as substrates for Escherichia coli dihydropteroate synthase. J Biol Chem. 1979;254(20):10337–45. https://doi.org/10.1016/s0021-9258(19)86714-5. Akhter S, Ansari MS, Andrabi S, Ullah N, Qayyum M. Effect of antibiotics in extender on bacterial and spermatozoal quality of cooled buffalo (Bubalus bubalis) bull semen. Reprod Domest Anim. 2008;43(3):272–8. https://doi.org/10.1111/j.1439-0531.2007.00890.x. Shah HN, Collins MD. Proposal to restrict the genus Bacteroides (Castellani and Chalmers) to Bacteroides fragilis and closely related species. Int J Syst Bacteriol. 1989;39(1):85–7. https://doi.org/10.1099/00207713-39-1-85. Willems A, Collins MD. 16S rRNA gene similarities indicate that Hallella seregens (Moore and Moore) and Mitsuokella dentalis (Haapsalo et al.) are genealogically highly related and are members of the genus Prevotella: emended description of the genus Prevotella (Shah and Collins) and description of Prevotella dentalis comb. nov. Int J Syst Bacteriol. 1995;45(4):832–6. https://doi.org/10.1099/00207713-45-4-832. Trachsel J, Humphrey S, Allen HK. Butyricicoccus porcorum sp. nov., a butyrate-producing bacterium from swine intestinal tract. Int J Syst Evol Microbiol. 2018;68(5):1737–42. https://doi.org/10.1099/ijsem.0.002738. Morgan XC, Tickle TL, Sokol H, Gevers D, Devaney KL, Ward DV, et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol. 2012;13(9):R79. https://doi.org/10.1186/gb-2012-13-9-r79. Jonkers D, Penders J, Masclee A, Pierik M. Probiotics in the management of inflammatory bowel disease: a systematic review of intervention studies in adult patients. Drugs. 2012;72(6):803–23. https://doi.org/10.2165/11632710-000000000-00000. Abe F, Ishibashi N, Shimamura S. Effect of administration of bifidobacteria and lactic acid bacteria to newborn calves and piglets. J Dairy Sci. 1995;78(12):2838–46. https://doi.org/10.3168/jds.S0022-0302(95)76914-4. Foditsch C, Pereira RV, Ganda EK, Gomez MS, Marques EC, Santin T, et al. Oral administration of Faecalibacterium prausnitzii decreased the incidence of severe diarrhea and related mortality rate and increased weight gain in preweaned dairy heifers. PLoS ONE. 2015;10(12):e0145485. https://doi.org/10.1371/journal.pone.0145485. Fan P, Kim M, Liu G, Zhai Y, Liu T, Driver JD, et al. The gut microbiota of newborn calves and influence of potential probiotics on reducing diarrheic disease by inhibition of pathogen colonization. Front Microbiol. 2021;12:772863. https://doi.org/10.3389/fmicb.2021.772863. Carr A, Diener C, Baliga NS, Gibbons SM. Use and abuse of correlation analyses in microbial ecology. ISME J. 2019;13(11):2647–55. https://doi.org/10.1038/s41396-019-0459-z. Lagkouvardos I, Lesker TR, Hitch TCA, Galvez EJC, Smit N, Neuhaus K, et al. Sequence and cultivation study of Muribaculaceae reveals novel species, host preference, and functional potential of this yet undescribed family. Microbiome. 2019;7(1):28. https://doi.org/10.1186/s40168-019-0637-2. Smith BJ, Miller RA, Schmidt TM. Muribaculaceae genomes assembled from metagenomes suggest genetic drivers of differential response to acarbose treatment in mice. mSphere. 2021;6(6):e0085121. https://doi.org/10.1128/msphere.00851-21. Sibai M, Altuntaş E, Yıldırım B, Öztürk G, Yıldırım S, Demircan T. Microbiome and longevity: High abundance of longevity-linked muribaculaceae in the gut of the long-living rodent Spalax leucodon. OMICS. 2020;24(10):592–601. https://doi.org/10.1089/omi.2020.0116. Ubeda C, Bucci V, Caballero S, Djukovic A, Toussaint NC, Equinda M, et al. Intestinal microbiota containing Barnesiella species cures vancomycin-resistant Enterococcus faecium colonization. Infect Immun. 2013;81(3):965–73. https://doi.org/10.1128/IAI.01197-12. Weese JS, Holcombe SJ, Embertson RM, Kurtz KA, Roessner HA, Jalali M, et al. Changes in the faecal microbiota of mares precede the development of post partum colic. Equine Vet J. 2015;47(6):641–9. https://doi.org/10.1111/evj.12361. Ichikawa-Seki M, Motooka D, Kinami A, Murakoshi F, Takahashi Y, Aita J, et al. Specific increase of Fusobacterium in the faecal microbiota of neonatal calves infected with Cryptosporidium parvum. Sci Rep. 2019;9(1):12517. https://doi.org/10.1038/s41598-019-48969-6. Kim MH, Yun CH, Kim HS, Kim JH, Kang SJ, Lee CH, et al. Effects of fermented soybean meal on growth performance, diarrheal incidence and immune-response of neonatal calves. Anim Sci J. 2010;81(4):475–81. https://doi.org/10.1111/j.1740-0929.2010.00760.x. Feizi LK, Zad SS, Jalali SAH, Rafiee H, Jazi MB, Sadeghi K, et al. Fermented soybean meal affects the ruminal fermentation and the abundance of selected bacterial species in Holstein calves: a multilevel analysis. Sci Rep. 2020;10(1):12062. https://doi.org/10.1038/s41598-020-68778-6. Poudel P, Froehlich K, Casper DP, St-Pierre B. Feeding essential oils to neonatal Holstein dairy calves results in increased ruminal Prevotellaceae abundance and propionate concentrations. Microorganisms. 2019;7(5):120. https://doi.org/10.3390/microorganisms7050120. Campolina JP, Coelho SG, Belli AL, Machado FS, Pereira LGR, Tomich TR, et al. Effects of a blend of essential oils in milk replacer on performance, rumen fermentation, blood parameters, and health scores of dairy heifers. PLoS ONE. 2021;16(3):e0231068. https://doi.org/10.1371/journal.pone.0231068. Tap J, Derrien M, Tornblom H, Brazeilles R, Cools-Portier S, Dore J, et al. Identification of an intestinal microbiota signature associated with severity of Irritable Bowel Syndrome. Gastroenterology. 2017;152(1):111-23.e8. https://doi.org/10.1053/j.gastro.2016.09.049. Wang J, Ji H, Wang S, Liu H, Zhang W, Zhang D, et al. Probiotic Lactobacillus plantarum promotes intestinal barrier function by strengthening the epithelium and modulating gut microbiota. Front Microbiol. 2018;9:1953. https://doi.org/10.3389/fmicb.2018.01953. Zambruni M, Ochoa TJ, Somasunderam A, Cabada MM, Morales ML, Mitreva M, et al. Stunting is preceded by intestinal mucosal damage and microbiome changes and is associated with systemic inflammation in a cohort of Peruvian infants. Am J Trop Med Hyg. 2019;101(5):1009–17. https://doi.org/10.4269/ajtmh.18-0975. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334(6052):105–8. https://doi.org/10.1126/science.1208344.