Features of Oxidation of Ar+-Ion-Irradiated GaAs
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques - Tập 16 - Trang 884-889 - 2022
Tóm tắt
The features of oxidation of the surface of GaAs irradiated by low-energy Ar+ ions is considered based on elemental and chemical-composition analyses, calculations of the concentration profiles for radiation-induced defects, and estimations of radiation-enhanced diffusivities and diffusion lengths. The native oxide layer is revealed to be highly enriched with Ga (by a factor of 1.5) due to the radiation-enhanced diffusion of elemental arsenic through vacancy defects even at room temperature. Elemental arsenic emerging at the interface with the oxide layer moves to a deeper radiation-damaged layer and fills vacancies there. At irradiation doses of Q > 3 × 1014 cm–2, which are sufficient for removal of the oxide layer with 3-keV Ar+ ions, elemental arsenic leaves the oxide layer within one hour, and the diffusion length reaches the thickness of the radiation-damaged layer within one day. The total number of vacancies in the radiation-damaged layer is enough to absorb all elemental arsenic formed during oxidation. The considered radiation-enhanced diffusion can be used to remove elemental arsenic, which is known to form nonradiative recombination centers quenching the luminescence of the underlying bulk layer, from the oxide layer.
Tài liệu tham khảo
C. D. Thurmond, G. P. Schwartz, G. W. Kammlott, and B. Schwartz, Solid State Sci. Technol. 127, 1366 (1980). https://doi.org/10.1149/1.2129900
N. A. Torkhov, Semiconductors 37, 1177 (2003). https://doi.org/10.1134/1.1619513
N. N. Bezryadin, G. I. Kotov, I. N. Arsentyev, et al., Semiconductors 46, 736 (2012). https://doi.org/10.1134/S1063782612060073
T. Ishikawa and H. Ikoma, Jpn. J. Appl. Phys. 31, 3981 (1992). https://doi.org/10.1143/JJAP.31.3981
J. P. Contour, J. Massies, and A. Saletes, Jpn. J. Appl. Phys. 24, L563 (1985). https://doi.org/10.1143/JJAP.24.L563
C. C. Surdu-Bob, S. O. Saied, and J. L. Sullivan, Appl. Surf. Sci. 183, 126 (2001). https://doi.org/10.1016/S0169-4332(01)00583-9
L. Bideux, D. Baca, B. Gruzza, V. Matolin, and C. Robert-Goumet, Surf. Sci. 566–568, 1158 (2004). https://doi.org/10.1016/j.susc.2004.06.076
L. Feng, L. Zhang, H. Liu, et al., Proc. SPIE 8912, 89120N (2013). https://doi.org/10.1117/12.2033679
VanA. I. Sambeek and R. S. Averback, J. Appl. Phys. 83, 7576 (1998). https://doi.org/10.1063/1.367873
V. M. Mikoushkin, V. V. Bryzgalov, S. Yu. Nikonov, et al., Semiconductors 52, 593 (2018). https://doi.org/10.1134/S1063782618050214
V. M. Mikoushkin, V. V. Bryzgalov, E. A. Makarevskaya, et al., Semiconductors 52, 2057 (2018). https://doi.org/10.1134/S1063782618160194
H. Gnaser, B. Heinz, W. Bock, and H. Oechsner, Phys. Rev. B 52, 14086 (1995). https://doi.org/10.1103/PhysRevB.52.14086
Y. Mizuhara, T. Bungo, T. Nagatomi, and Y. Takai, Surf. Interface Anal. 37, 343 (2005). https://doi.org/10.1002/sia.1957
D. L. Kendall, Semiconductors and Semimetals, Ed. by R. K. Willardson and A. C. Beer, (Academic, New York, 1983), p. 565.
H. D. Palfrey, M. Brown, and A. F. W. Willoughby, J. Electron. Mater. 12, 863 (1983). https://doi.org/10.1007/BF02655299
T. Y. Tan, H. M. You, S. Yu, U. M. Gosele, W. Jager, D. W. Boeringer, F. Zypman, R. Tsu, and S.-T. Lee, J. Appl. Phys. 72, 5206 (1992). https://doi.org/10.1063/1.352002
B. A. Kalin, Physical Materials Science: Textbook (Mosk. Inzh.-Fiz. Inst., Moscow, 2007) [in Russian].
D. Shaw, Atomic Diffusion in Semiconductors (Plenum, London, 1973). https://doi.org/10.1007/978-1-4615-8636-4
H. Mehrer, Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes (Springer, Nee York, 2007). https://doi.org/10.1007/978-3-540-71488-0
J. F. Wager, J. Appl. Phys. 69, 3022 (1991). https://doi.org/10.1063/1.348589
M. Bockstedte and M. Scheffler, J. Phys. Chem. 200, 195 (1997). https://doi.org/10.1524/zpch.1997.200.Part_1_2.195
J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, New York, 1985).
V. M. Mikoushkin, A. P. Solonitsyna, and V. M. Lavchiev, Proc. 21st Int. Symp. Nanostructures: Physics and Technology (St. Petersburg, 2013), p. 206.