Features of MCSs in the Central United States Using Simulations of ERA5-Forced Convection-Permitting Climate Models
Tóm tắt
Từ khóa
Tài liệu tham khảo
Arritt, R. W., T. D. Rink, M. Segal, D. P. Todey, C. A. Clark, M. J. Mitchell, and K. M. Labas, 1997: The Great Plains low-level jet during the warm season of 1993. Mon. Wea. Rev., 125, 2176–2192, https://doi.org/10.1175/1520-0493(1997)125<2176:TGPLLJ>2.0.CO;2.10.1175/1520-0493(1997)125<2176:TGPLLJ>2.0.CO;2
Ashley, W. S., T. L. Mote, P. G. Dixon, S. L. Trotter, E. J. Powell, J. D. Durkee, and A. J. Grundstein, 2003: Distribution of mesoscale convective complex rainfall in the United States. Mon. Wea. Rev., 131, 3003–3017, https://doi.org/10.1175/1520-0493(2003)131<3003:DOMCCR>2.0.CO;2.10.1175/1520-0493(2003)131<3003:DOMCCR>2.0.CO;2
Bunkers, M. J., B. A. Klimowski, J. W. Zeitler, R. L. Thompson, and M. L. Weisman, 2000: Predicting supercell motion using a new hodograph technique. Wea. Forecasting, 15, 61–79, https://doi.org/10.1175/1520-0434(2000)015<0061:PSMUAN>2.0.CO;2.10.1175/1520-0434(2000)015<0061:PSMUAN>2.0.CO;2
Cai, H., and R. E. Dumais Jr., 2015: Object-based evaluation of a numerical weather prediction model’s performance through forecast storm characteristic analysis. Wea. Forecasting, 30, 1451–1468, https://doi.org/10.1175/WAF-D-15-0008.1.10.1175/WAF-D-15-0008.1
Carbone, R., J. Tuttle, D. Ahijevych, and S. Trier, 2002: Inferences of predictability associated with warm season precipitation episodes. J. Atmos. Sci., 59, 2033–2056, https://doi.org/10.1175/1520-0469(2002)059<2033:IOPAWW>2.0.CO;2.10.1175/1520-0469(2002)059<2033:IOPAWW>2.0.CO;2
Coniglio, M. C., and S. Corfidi, 2006: Forecasting the speed and longevity of severe mesoscale convective systems. Symp. on the Challenges of Severe Convective Storms, Atlanta, GA, Amer. Meteor. Soc., P1.30, https://ams.confex.com/ams/Annual2006/webprogram/Paper104815.html.10.1175/2010MWR3233.1
Coniglio, M. C., J. Y. Hwang, and D. J. Stensrud, 2010: Environmental factors in the upscale growth and longevity of MCSs derived from Rapid Update Cycle analyses. Mon. Wea. Rev., 138, 3514–3539, https://doi.org/10.1175/2010MWR3233.1.10.1175/1520-0434(2003)018<0997:CPAMPF>2.0.CO;2
Corfidi, S. F., 2003: Cold pools and MCS propagation: Forecasting the motion of downwind-developing MCSs. Wea. Forecasting, 18, 997–1017, https://doi.org/10.1175/1520-0434(2003)018<0997:CPAMPF>2.0.CO;2.10.1175/1520-0434(2001)016<0329:EODEUP>2.0.CO;2
Evans, J. S., and C. A. Doswell, 2001: Examination of derecho environments using proximity soundings. Wea. Forecasting, 16, 329–342, https://doi.org/10.1175/1520-0434(2001)016<0329:EODEUP>2.0.CO;2.10.1038/ncomms13429
Feng, Z., L. R. Leung, S. Hagos, R. A. Houze, C. D. Burleyson, and K. Balaguru, 2016: More frequent intense and long-lived storms dominate the springtime trend in central us rainfall. Nat. Commun., 7, 13429, https://doi.org/10.1038/ncomms13429.10.1175/JCLI-D-19-0137.1
Feng, Z., R. A. Houze Jr., L. R. Leung, F. Song, J. C. Hardin, J. Wang, W. I. Gustafson, and C. R. Homeyer, 2019: Spatiotemporal characteristics and large-scale environments of mesoscale convective systems east of the Rocky Mountains. J. Climate, 32, 7303–7328, https://doi.org/10.1175/JCLI-D-19-0137.1.10.1002/qj.3930
Francis, D., M. Temimi, R. Fonseca, N. R. Nelli, R. Abida, M. Weston, and Y. Whebe, 2021: On the analysis of a summertime convective event in a hyperarid environment. Quart. J. Roy. Meteor. Soc., 147, 501–525, https://doi.org/10.1002/qj.3930.10.1175/1520-0450(1986)025<1333:TCOMCW>2.0.CO;2
Fritsch, J., R. Kane, and C. Chelius, 1986: The contribution of mesoscale convective weather systems to the warm-season precipitation in the United States. J. Appl. Meteor. Climatol., 25, 1333–1345, https://doi.org/10.1175/1520-0450(1986)025<1333:TCOMCW>2.0.CO;2.10.1175/BAMS-D-15-00257.1
Geerts, B., and Coauthors, 2017: The 2015 Plains Elevated Convection At Night Field Project. Bull. Amer. Meteor. Soc., 98, 767–786, https://doi.org/10.1175/BAMS-D-15-00257.1.10.1002/2017JD027629
Gevorgyan, A., 2018a: A case study of low-level jets in Yerevan simulated by the WRF model. J. Geophys. Res. Atmos., 123, 300–314, https://doi.org/10.1002/2017JD027629.10.1029/2017JD028247
Gevorgyan, A., 2018b: Convection-permitting simulation of a heavy rainfall event in Armenia using the WRF model. J. Geophys. Res. Atmos., 123, 11 008–11 029, https://doi.org/10.1029/2017JD028247.
Glickman, T. S., 2000: Glossary of Meteorology. 2nd ed. Amer. Meteor. Soc., 855 pp., http://glossary.ametsoc.org/.10.1256/qj.04.147
Grabowski, W., Coauthors, 2006: Daytime convective development over land: A model intercomparison based on LBA observations. Quart. J. Roy. Meteor. Soc., 132, 317–344, https://doi.org/10.1256/qj.04.147.10.1175/JCLI-D-18-0559.1
Haberlie, A. M., and W. S. Ashley, 2019: A radar-based climatology of mesoscale convective systems in the United States. J. Climate, 32, 1591–1606, https://doi.org/10.1175/JCLI-D-18-0559.1.10.3390/atmos12111462
Hassler, B., and A. Lauer, 2021: Comparison of reanalysis and observational precipitation datasets including ERA5 and WFDE5. Atmosphere, 12, 1462, https://doi.org/10.3390/atmos12111462.10.1175/1520-0434(1988)003<0115:FMAOCO>2.0.CO;2
Heideman, K. F., and J. M. Fritsch, 1988: Forcing mechanisms and other characteristics of significant summertime precipitation. Wea. Forecasting, 3, 115–130, https://doi.org/10.1175/1520-0434(1988)003<0115:FMAOCO>2.0.CO;2.10.1002/qj.3803
Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803.10.1175/MWR3199.1
Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318–2341, https://doi.org/10.1175/MWR3199.1.
Houze, R. A., Jr., 2004: Mesoscale convective systems. Rev. Geophys., 42, RG4003, https://doi.org/10.1029/2004RG000150.10.1175/1520-0493(1990)118<0613:MOOSRI>2.0.CO;2
Houze, R. A., Jr., B. F. Smull, and P. Dodge, 1990: Mesoscale organization of springtime rainstorms in Oklahoma. Mon. Wea. Rev., 118, 613–654, https://doi.org/10.1175/1520-0493(1990)118<0613:MOOSRI>2.0.CO;2.10.1029/2008JD009944
Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.10.1175/WAF1012.1
Jirak, I. L., and W. R. Cotton, 2007: Observational analysis of the predictability of mesoscale convective systems. Wea. Forecasting, 22, 813–838, https://doi.org/10.1175/WAF1012.1.10.1175/1520-0493(2003)131<2428:SARSOM>2.0.CO;2
Jirak, I. L., W. R. Cotton, and R. L. McAnelly, 2003: Satellite and radar survey of mesoscale convective system development. Mon. Wea. Rev., 131, 2428–2449, https://doi.org/10.1175/1520-0493(2003)131<2428:SARSOM>2.0.CO;2.10.1175/MWR-D-10-05037.1
Kang, S.-L., and G. H. Bryan, 2011: A large-eddy simulation study of moist convection initiation over heterogeneous surface fluxes. Mon. Wea. Rev., 139, 2901–2917, https://doi.org/10.1175/MWR-D-10-05037.1.10.1175/1520-0493(2000)128<2756:TLSEOT>2.0.CO;2
Laing, A. G., and J. M. Fritsch, 2000: The large-scale environments of the global populations of mesoscale convective complexes. Mon. Wea. Rev., 128, 2756–2776, https://doi.org/10.1175/1520-0493(2000)128<2756:TLSEOT>2.0.CO;2.10.1175/2008JTECHA1153.1
Lakshmanan, V., K. Hondl, and R. Rabin, 2009: An efficient, general-purpose technique for identifying storm cells in geospatial images. J. Atmos. Oceanic Technol., 26, 523–537, https://doi.org/10.1175/2008JTECHA1153.1.10.1175/2010WAF2222379.1
Letkewicz, C. E., and M. D. Parker, 2010: Forecasting the maintenance of mesoscale convective systems crossing the Appalachian Mountains. Wea. Forecasting, 25, 1179–1195, https://doi.org/10.1175/2010WAF2222379.1.10.1175/2010JAS3423.1
Li, Y., and R. B. Smith, 2010: The detection and significance of diurnal pressure and potential vorticity anomalies east of the Rockies. J. Atmos. Sci., 67, 2734–2751, https://doi.org/10.1175/2010JAS3423.1.10.1007/s00382-016-3327-9
Liu, C., and Coauthors, 2017: Continental-scale convection-permitting modeling of the current and future climate of North America. Climate Dyn., 49, 71–95, https://doi.org/10.1007/s00382-016-3327-9.10.1175/1520-0477(1980)061<1374:MCC>2.0.CO;2
Maddox, R. A., 1980: Mesoscale convective complexes. Bull. Amer. Meteor. Soc., 61, 1374–1387, https://doi.org/10.1175/1520-0477(1980)061<1374:MCC>2.0.CO;2.10.1029/2021GL093316
Mulholland, J., J. Peters, and H. Morrison, 2021: How does LCL height influence deep convective updraft width? Geophys. Res. Lett., 48, e2021GL093316, https://doi.org/10.1029/2021GL093316.10.1175/WAF-D-14-00112.1
Nelson, B. R., O. P. Prat, D.-J. Seo, and E. Habib, 2016: Assessment and implications of NCEP Stage IV quantitative precipitation estimates for product intercomparisons. Wea. Forecasting, 31, 371–394, https://doi.org/10.1175/WAF-D-14-00112.1.10.1029/2010JD015139
Niu, G.-Y., and Coauthors, 2011: The community Noah land surface model with multi parameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res., 116, D12109, https://doi.org/10.1029/2010JD015139.10.1002/met.2043
Onwukwe, C., P. L. Jackson, and S. J. Déry, 2022: Intercomparison of atmospheric forcing datasets and two PBL schemes for precipitation modelling over a coastal valley in Northern British Columbia, Canada. Meteor. Appl., 29, e2043, https://doi.org/10.1002/met.2043.10.1007/s00382-017-3993-2
Prein, A. F., C. Liu, K. Ikeda, R. Bullock, R. M. Rasmussen, G. J. Holland, and M. Clark, 2017: Simulating North American mesoscale convective systems with a convection-permitting climate model. Climate Dyn., 55, 95–110, https://doi.org/10.1007/s00382-017-3993-2.10.1175/JAS-D-13-0243.1
Pu, B., and R. E. Dickinson, 2014: Diurnal spatial variability of Great Plains summer precipitation related to the dynamics of the low-level jet. J. Atmos. Sci., 71, 1807–1817, https://doi.org/10.1175/JAS-D-13-0243.1.
Rasmussen, R., and C. Liu, 2017: High resolution WRF simulations of the current and future climate of North America. National Center for Atmospheric Research Computational and Information Systems Laboratory Research Data Archive, https://doi.org/10.5065/D6V40SXP.10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2
Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463–485, https://doi.org/10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2.10.1007/s00382-019-04754-9
Scaff, L., A. F. Prein, Y. Li, C. Liu, R. Rasmussen, and K. Ikeda, 2019: Simulating the convective precipitation diurnal cycle in North America’s current and future climate. Climate Dyn., 55, 369–382, https://doi.org/10.1007/s00382-019-04754-9.10.1175/2008JAS2856.1
Schumacher, R. S., 2009: Mechanisms for quasi-stationary behavior in simulated heavy-rain-producing convective systems. J. Atmos. Sci., 66, 1543–1568, https://doi.org/10.1175/2008JAS2856.1.10.1175/2008WAF2222173.1
Schumacher, R. S., and R. H. Johnson, 2009: Quasi-stationary, extreme-rain-producing convective systems associated with midlevel cyclonic circulations. Wea. Forecasting, 24, 555–574, https://doi.org/10.1175/2008WAF2222173.1.
Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.10.1214/aoms/1177730256
Smirnov, N., 1948: Table for estimating the goodness of fit of empirical distributions. Ann. Math. Stat., 19, 279–281, https://doi.org/10.1214/aoms/1177730256.10.1175/JCLI-D-18-0839.1
Song, F., Z. Feng, L. R. Leung, R. A. Houze Jr., J. Wang, J. Hardin, and C. R. Homeyer, 2019: Contrasting spring and summer large-scale environments associated with mesoscale convective systems over the U.S. Great Plains. J. Climate, 32, 6749–6767, https://doi.org/10.1175/JCLI-D-18-0839.1.10.5194/hess-24-2527-2020
Tarek, M., F. P. Brissette, and R. Arsenault, 2020: Evaluation of the ERA5 reanalysis as a potential reference dataset for hydrological modelling over North America. Hydrol. Earth Syst. Sci., 24, 2527–2544, https://doi.org/10.5194/hess-24-2527-2020.10.1175/JAS-D-13-0305.1
Thompson, G., and T. Eidhammer, 2014: A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. J. Atmos. Sci., 71, 3636–3658, https://doi.org/10.1175/JAS-D-13-0305.1.10.1175/1520-0434(2003)018<1243:CPSWSE>2.0.CO;2
Thompson, R. L., R. Edwards, J. A. Hart, K. L. Elmore, and P. Markowski, 2003: Close proximity soundings within supercell environments obtained from the rapid update cycle. Wea. Forecasting, 18, 1243–1261, https://doi.org/10.1175/1520-0434(2003)018<1243:CPSWSE>2.0.CO;2.10.1175/1520-0493(2003)131<2804:LMWSLA>2.0.CO;2
Trapp, R. J., and M. L. Weisman, 2003: Low-level mesovortices within squall lines and bow echoes. Part II: Their genesis and implications. Mon. Wea. Rev., 131, 2804–2823, https://doi.org/10.1175/1520-0493(2003)131<2804:LMWSLA>2.0.CO;2.10.1175/2009JAS3247.1
Trier, S., C. Davis, and D. Ahijevych, 2010: Environmental controls on the simulated diurnal cycle of warm-season precipitation in the continental United States. J. Atmos. Sci., 67, 1066–1090, https://doi.org/10.1175/2009JAS3247.1.10.1175/1520-0493(1989)117<0273:NSOAOO>2.0.CO;2
Tripoli, G. J., and W. R. Cotton, 1989a: Numerical study of an observed orogenic mesoscale convective system. Part I: Simulated genesis and comparison with observations. Mon. Wea. Rev., 117, 273–304, https://doi.org/10.1175/1520-0493(1989)117<0273:NSOAOO>2.0.CO;2.10.1175/1520-0493(1989)117<0305:NSOAOO>2.0.CO;2
Tripoli, G. J., and W. R. Cotton, 1989b: Numerical study of an observed orogenic mesoscale convective system. Part II: Analysis of governing dynamics. Mon. Wea. Rev., 117, 305–328, https://doi.org/10.1175/1520-0493(1989)117<0305:NSOAOO>2.0.CO;2.10.1175/MWR3188.1
Tuttle, J. D., and C. A. Davis, 2006: Corridors of warm season precipitation in the central United States. Mon. Wea. Rev., 134, 2297–2317, https://doi.org/10.1175/MWR3188.1.
Vitart, F., G. Balsamo, J. Bidlot, S. Lang, I. Tsonevsky, D. Richardson, and M. Balmaseda, 2019: Use of ERA5 to initialize ensemble re-forecasts. ECMWF Tech. Memo. 841, 16 pp., https://doi.org/10.21957/w8i57wuz6.10.1175/1520-0469(2004)061<0361:ATFSLS>2.0.CO;2
Weisman, M. L., and R. Rotunno, 2004: “A theory for strong long-lived squall lines” revisited. J. Atmos. Sci., 61, 361–382, https://doi.org/10.1175/1520-0469(2004)061<0361:ATFSLS>2.0.CO;2.
Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. International Geophysics Series, Vol. 100, Academic Press, 704 pp.10.1002/2017JD027033
Yang, Q., R. A. Houze Jr., L. R. Leung, and Z. Feng, 2017: Environments of long-lived mesoscale convective systems over the central United States in convection permitting climate simulations. J. Geophys. Res. Atmos., 122, 13 288–13 307, https://doi.org/10.1002/2017JD027033.10.1175/1520-0493(1997)125<2176:TGPLLJ>2.0.CO;2