Features of MCSs in the Central United States Using Simulations of ERA5-Forced Convection-Permitting Climate Models

Weather and Forecasting - Tập 37 Số 9 - Trang 1681-1702 - 2022
Yunsung Hwang1,2, Zhenhua Li2, Yanping Li1,2
1a School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
2b Global Institute for Water Security, University of Saskatchewan, Saskatoon, Saskatchewan, Canada

Tóm tắt

Abstract In this work, we characterized the occurrences and conditions before the initiations of mesoscale convective systems (MCSs) in the central United States, using 15 years of observations and convection-permitting climate model simulations. The variabilities of MCSs in summer were obtained using high-resolution (4 km) observation data [Stage-IV (stIV)] and ECMWF Re-Analysis v5 (ERA5)-forced Weather Research and Forecasting (WRF) Model simulations (E5RUN). MCSs were identified using the object tracking algorithm MODE-time domain (MTD). MTD-determined MCSs were divided into daytime short-lived MCSs (SLM12), daytime long-lived MCSs (LLM12), nighttime short-lived MCSs (SLM00), and nighttime long-lived MCSs (LLM00). E5RUN showed skill to simulate MCSs by obtaining similar statistics in occurrences, areal coverages, and propagation speeds compared to those of stIV. We calculated the 15 parameters using sounding data from E5RUN before an MCS was initiated (−1, −3, −6, and −9 h) at each location of an MCS. The parameters were tested to figure out the significance of predicting the longevities of MCSs. The key findings are 1) LLM12 showed favorable thermodynamic variables compared to that of SLM12 and 2) LLM00 showed significant conditions of vertically rotating winds and sheared environments that affect the longevity of MCSs. Moreover, storm-relative helicity of 0–3 km, precipitable water, and vertical wind shear of 0–6 km are the most significant parameters to determine the longevities of MCSs (both daytime and nighttime MCSs). Significance Statement The purpose of this study is to understand the features of mesoscale convective systems (MCSs) in observational data and convection-permitting climate model simulations. We tested long-term simulations using new forcing data (ERA5) to see the benefits and limitations. We designed a novel approach to obtain the distributions of meteorological parameters (instead of obtaining one value for one event of MCS) before initiations of MCSs to understand preconvective conditions (times from −9 to −1 h from initiation). We also divided MCSs into daytime/nighttime and short-/long-lived MCSs to help predict MCSs longevity considering the initiation times. Our results provide hints for the forecasters to predict MCS longevity based on preconvective conditions from parameters discussed in this work.

Từ khóa


Tài liệu tham khảo

Arritt, R. W., T. D. Rink, M. Segal, D. P. Todey, C. A. Clark, M. J. Mitchell, and K. M. Labas, 1997: The Great Plains low-level jet during the warm season of 1993. Mon. Wea. Rev., 125, 2176–2192, https://doi.org/10.1175/1520-0493(1997)125<2176:TGPLLJ>2.0.CO;2.10.1175/1520-0493(1997)125<2176:TGPLLJ>2.0.CO;2

Ashley, W. S., T. L. Mote, P. G. Dixon, S. L. Trotter, E. J. Powell, J. D. Durkee, and A. J. Grundstein, 2003: Distribution of mesoscale convective complex rainfall in the United States. Mon. Wea. Rev., 131, 3003–3017, https://doi.org/10.1175/1520-0493(2003)131<3003:DOMCCR>2.0.CO;2.10.1175/1520-0493(2003)131<3003:DOMCCR>2.0.CO;2

Bunkers, M. J., B. A. Klimowski, J. W. Zeitler, R. L. Thompson, and M. L. Weisman, 2000: Predicting supercell motion using a new hodograph technique. Wea. Forecasting, 15, 61–79, https://doi.org/10.1175/1520-0434(2000)015<0061:PSMUAN>2.0.CO;2.10.1175/1520-0434(2000)015<0061:PSMUAN>2.0.CO;2

Cai, H., and R. E. Dumais Jr., 2015: Object-based evaluation of a numerical weather prediction model’s performance through forecast storm characteristic analysis. Wea. Forecasting, 30, 1451–1468, https://doi.org/10.1175/WAF-D-15-0008.1.10.1175/WAF-D-15-0008.1

Carbone, R., J. Tuttle, D. Ahijevych, and S. Trier, 2002: Inferences of predictability associated with warm season precipitation episodes. J. Atmos. Sci., 59, 2033–2056, https://doi.org/10.1175/1520-0469(2002)059<2033:IOPAWW>2.0.CO;2.10.1175/1520-0469(2002)059<2033:IOPAWW>2.0.CO;2

Coniglio, M. C., and S. Corfidi, 2006: Forecasting the speed and longevity of severe mesoscale convective systems. Symp. on the Challenges of Severe Convective Storms, Atlanta, GA, Amer. Meteor. Soc., P1.30, https://ams.confex.com/ams/Annual2006/webprogram/Paper104815.html.10.1175/2010MWR3233.1

Coniglio, M. C., J. Y. Hwang, and D. J. Stensrud, 2010: Environmental factors in the upscale growth and longevity of MCSs derived from Rapid Update Cycle analyses. Mon. Wea. Rev., 138, 3514–3539, https://doi.org/10.1175/2010MWR3233.1.10.1175/1520-0434(2003)018<0997:CPAMPF>2.0.CO;2

Corfidi, S. F., 2003: Cold pools and MCS propagation: Forecasting the motion of downwind-developing MCSs. Wea. Forecasting, 18, 997–1017, https://doi.org/10.1175/1520-0434(2003)018<0997:CPAMPF>2.0.CO;2.10.1175/1520-0434(2001)016<0329:EODEUP>2.0.CO;2

Evans, J. S., and C. A. Doswell, 2001: Examination of derecho environments using proximity soundings. Wea. Forecasting, 16, 329–342, https://doi.org/10.1175/1520-0434(2001)016<0329:EODEUP>2.0.CO;2.10.1038/ncomms13429

Feng, Z., L. R. Leung, S. Hagos, R. A. Houze, C. D. Burleyson, and K. Balaguru, 2016: More frequent intense and long-lived storms dominate the springtime trend in central us rainfall. Nat. Commun., 7, 13429, https://doi.org/10.1038/ncomms13429.10.1175/JCLI-D-19-0137.1

Feng, Z., R. A. Houze Jr., L. R. Leung, F. Song, J. C. Hardin, J. Wang, W. I. Gustafson, and C. R. Homeyer, 2019: Spatiotemporal characteristics and large-scale environments of mesoscale convective systems east of the Rocky Mountains. J. Climate, 32, 7303–7328, https://doi.org/10.1175/JCLI-D-19-0137.1.10.1002/qj.3930

Francis, D., M. Temimi, R. Fonseca, N. R. Nelli, R. Abida, M. Weston, and Y. Whebe, 2021: On the analysis of a summertime convective event in a hyperarid environment. Quart. J. Roy. Meteor. Soc., 147, 501–525, https://doi.org/10.1002/qj.3930.10.1175/1520-0450(1986)025<1333:TCOMCW>2.0.CO;2

Fritsch, J., R. Kane, and C. Chelius, 1986: The contribution of mesoscale convective weather systems to the warm-season precipitation in the United States. J. Appl. Meteor. Climatol., 25, 1333–1345, https://doi.org/10.1175/1520-0450(1986)025<1333:TCOMCW>2.0.CO;2.10.1175/BAMS-D-15-00257.1

Geerts, B., and Coauthors, 2017: The 2015 Plains Elevated Convection At Night Field Project. Bull. Amer. Meteor. Soc., 98, 767–786, https://doi.org/10.1175/BAMS-D-15-00257.1.10.1002/2017JD027629

Gevorgyan, A., 2018a: A case study of low-level jets in Yerevan simulated by the WRF model. J. Geophys. Res. Atmos., 123, 300–314, https://doi.org/10.1002/2017JD027629.10.1029/2017JD028247

Gevorgyan, A., 2018b: Convection-permitting simulation of a heavy rainfall event in Armenia using the WRF model. J. Geophys. Res. Atmos., 123, 11 008–11 029, https://doi.org/10.1029/2017JD028247.

Glickman, T. S., 2000: Glossary of Meteorology. 2nd ed. Amer. Meteor. Soc., 855 pp., http://glossary.ametsoc.org/.10.1256/qj.04.147

Grabowski, W., Coauthors, 2006: Daytime convective development over land: A model intercomparison based on LBA observations. Quart. J. Roy. Meteor. Soc., 132, 317–344, https://doi.org/10.1256/qj.04.147.10.1175/JCLI-D-18-0559.1

Haberlie, A. M., and W. S. Ashley, 2019: A radar-based climatology of mesoscale convective systems in the United States. J. Climate, 32, 1591–1606, https://doi.org/10.1175/JCLI-D-18-0559.1.10.3390/atmos12111462

Hassler, B., and A. Lauer, 2021: Comparison of reanalysis and observational precipitation datasets including ERA5 and WFDE5. Atmosphere, 12, 1462, https://doi.org/10.3390/atmos12111462.10.1175/1520-0434(1988)003<0115:FMAOCO>2.0.CO;2

Heideman, K. F., and J. M. Fritsch, 1988: Forcing mechanisms and other characteristics of significant summertime precipitation. Wea. Forecasting, 3, 115–130, https://doi.org/10.1175/1520-0434(1988)003<0115:FMAOCO>2.0.CO;2.10.1002/qj.3803

Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803.10.1175/MWR3199.1

Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318–2341, https://doi.org/10.1175/MWR3199.1.

Houze, R. A., Jr., 1993: Cloud Dynamics. Academic Press, 573 pp..10.1029/2004RG000150

Houze, R. A., Jr., 2004: Mesoscale convective systems. Rev. Geophys., 42, RG4003, https://doi.org/10.1029/2004RG000150.10.1175/1520-0493(1990)118<0613:MOOSRI>2.0.CO;2

Houze, R. A., Jr., B. F. Smull, and P. Dodge, 1990: Mesoscale organization of springtime rainstorms in Oklahoma. Mon. Wea. Rev., 118, 613–654, https://doi.org/10.1175/1520-0493(1990)118<0613:MOOSRI>2.0.CO;2.10.1029/2008JD009944

Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.10.1175/WAF1012.1

Jirak, I. L., and W. R. Cotton, 2007: Observational analysis of the predictability of mesoscale convective systems. Wea. Forecasting, 22, 813–838, https://doi.org/10.1175/WAF1012.1.10.1175/1520-0493(2003)131<2428:SARSOM>2.0.CO;2

Jirak, I. L., W. R. Cotton, and R. L. McAnelly, 2003: Satellite and radar survey of mesoscale convective system development. Mon. Wea. Rev., 131, 2428–2449, https://doi.org/10.1175/1520-0493(2003)131<2428:SARSOM>2.0.CO;2.10.1175/MWR-D-10-05037.1

Kang, S.-L., and G. H. Bryan, 2011: A large-eddy simulation study of moist convection initiation over heterogeneous surface fluxes. Mon. Wea. Rev., 139, 2901–2917, https://doi.org/10.1175/MWR-D-10-05037.1.10.1175/1520-0493(2000)128<2756:TLSEOT>2.0.CO;2

Laing, A. G., and J. M. Fritsch, 2000: The large-scale environments of the global populations of mesoscale convective complexes. Mon. Wea. Rev., 128, 2756–2776, https://doi.org/10.1175/1520-0493(2000)128<2756:TLSEOT>2.0.CO;2.10.1175/2008JTECHA1153.1

Lakshmanan, V., K. Hondl, and R. Rabin, 2009: An efficient, general-purpose technique for identifying storm cells in geospatial images. J. Atmos. Oceanic Technol., 26, 523–537, https://doi.org/10.1175/2008JTECHA1153.1.10.1175/2010WAF2222379.1

Letkewicz, C. E., and M. D. Parker, 2010: Forecasting the maintenance of mesoscale convective systems crossing the Appalachian Mountains. Wea. Forecasting, 25, 1179–1195, https://doi.org/10.1175/2010WAF2222379.1.10.1175/2010JAS3423.1

Li, Y., and R. B. Smith, 2010: The detection and significance of diurnal pressure and potential vorticity anomalies east of the Rockies. J. Atmos. Sci., 67, 2734–2751, https://doi.org/10.1175/2010JAS3423.1.10.1007/s00382-016-3327-9

Liu, C., and Coauthors, 2017: Continental-scale convection-permitting modeling of the current and future climate of North America. Climate Dyn., 49, 71–95, https://doi.org/10.1007/s00382-016-3327-9.10.1175/1520-0477(1980)061<1374:MCC>2.0.CO;2

Maddox, R. A., 1980: Mesoscale convective complexes. Bull. Amer. Meteor. Soc., 61, 1374–1387, https://doi.org/10.1175/1520-0477(1980)061<1374:MCC>2.0.CO;2.10.1029/2021GL093316

Mulholland, J., J. Peters, and H. Morrison, 2021: How does LCL height influence deep convective updraft width? Geophys. Res. Lett., 48, e2021GL093316, https://doi.org/10.1029/2021GL093316.10.1175/WAF-D-14-00112.1

Nelson, B. R., O. P. Prat, D.-J. Seo, and E. Habib, 2016: Assessment and implications of NCEP Stage IV quantitative precipitation estimates for product intercomparisons. Wea. Forecasting, 31, 371–394, https://doi.org/10.1175/WAF-D-14-00112.1.10.1029/2010JD015139

Niu, G.-Y., and Coauthors, 2011: The community Noah land surface model with multi parameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res., 116, D12109, https://doi.org/10.1029/2010JD015139.10.1002/met.2043

Onwukwe, C., P. L. Jackson, and S. J. Déry, 2022: Intercomparison of atmospheric forcing datasets and two PBL schemes for precipitation modelling over a coastal valley in Northern British Columbia, Canada. Meteor. Appl., 29, e2043, https://doi.org/10.1002/met.2043.10.1007/s00382-017-3993-2

Prein, A. F., C. Liu, K. Ikeda, R. Bullock, R. M. Rasmussen, G. J. Holland, and M. Clark, 2017: Simulating North American mesoscale convective systems with a convection-permitting climate model. Climate Dyn., 55, 95–110, https://doi.org/10.1007/s00382-017-3993-2.10.1175/JAS-D-13-0243.1

Pu, B., and R. E. Dickinson, 2014: Diurnal spatial variability of Great Plains summer precipitation related to the dynamics of the low-level jet. J. Atmos. Sci., 71, 1807–1817, https://doi.org/10.1175/JAS-D-13-0243.1.

Rasmussen, R., and C. Liu, 2017: High resolution WRF simulations of the current and future climate of North America. National Center for Atmospheric Research Computational and Information Systems Laboratory Research Data Archive, https://doi.org/10.5065/D6V40SXP.10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2

Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463–485, https://doi.org/10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2.10.1007/s00382-019-04754-9

Scaff, L., A. F. Prein, Y. Li, C. Liu, R. Rasmussen, and K. Ikeda, 2019: Simulating the convective precipitation diurnal cycle in North America’s current and future climate. Climate Dyn., 55, 369–382, https://doi.org/10.1007/s00382-019-04754-9.10.1175/2008JAS2856.1

Schumacher, R. S., 2009: Mechanisms for quasi-stationary behavior in simulated heavy-rain-producing convective systems. J. Atmos. Sci., 66, 1543–1568, https://doi.org/10.1175/2008JAS2856.1.10.1175/2008WAF2222173.1

Schumacher, R. S., and R. H. Johnson, 2009: Quasi-stationary, extreme-rain-producing convective systems associated with midlevel cyclonic circulations. Wea. Forecasting, 24, 555–574, https://doi.org/10.1175/2008WAF2222173.1.

Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.10.1214/aoms/1177730256

Smirnov, N., 1948: Table for estimating the goodness of fit of empirical distributions. Ann. Math. Stat., 19, 279–281, https://doi.org/10.1214/aoms/1177730256.10.1175/JCLI-D-18-0839.1

Song, F., Z. Feng, L. R. Leung, R. A. Houze Jr., J. Wang, J. Hardin, and C. R. Homeyer, 2019: Contrasting spring and summer large-scale environments associated with mesoscale convective systems over the U.S. Great Plains. J. Climate, 32, 6749–6767, https://doi.org/10.1175/JCLI-D-18-0839.1.10.5194/hess-24-2527-2020

Tarek, M., F. P. Brissette, and R. Arsenault, 2020: Evaluation of the ERA5 reanalysis as a potential reference dataset for hydrological modelling over North America. Hydrol. Earth Syst. Sci., 24, 2527–2544, https://doi.org/10.5194/hess-24-2527-2020.10.1175/JAS-D-13-0305.1

Thompson, G., and T. Eidhammer, 2014: A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. J. Atmos. Sci., 71, 3636–3658, https://doi.org/10.1175/JAS-D-13-0305.1.10.1175/1520-0434(2003)018<1243:CPSWSE>2.0.CO;2

Thompson, R. L., R. Edwards, J. A. Hart, K. L. Elmore, and P. Markowski, 2003: Close proximity soundings within supercell environments obtained from the rapid update cycle. Wea. Forecasting, 18, 1243–1261, https://doi.org/10.1175/1520-0434(2003)018<1243:CPSWSE>2.0.CO;2.10.1175/1520-0493(2003)131<2804:LMWSLA>2.0.CO;2

Trapp, R. J., and M. L. Weisman, 2003: Low-level mesovortices within squall lines and bow echoes. Part II: Their genesis and implications. Mon. Wea. Rev., 131, 2804–2823, https://doi.org/10.1175/1520-0493(2003)131<2804:LMWSLA>2.0.CO;2.10.1175/2009JAS3247.1

Trier, S., C. Davis, and D. Ahijevych, 2010: Environmental controls on the simulated diurnal cycle of warm-season precipitation in the continental United States. J. Atmos. Sci., 67, 1066–1090, https://doi.org/10.1175/2009JAS3247.1.10.1175/1520-0493(1989)117<0273:NSOAOO>2.0.CO;2

Tripoli, G. J., and W. R. Cotton, 1989a: Numerical study of an observed orogenic mesoscale convective system. Part I: Simulated genesis and comparison with observations. Mon. Wea. Rev., 117, 273–304, https://doi.org/10.1175/1520-0493(1989)117<0273:NSOAOO>2.0.CO;2.10.1175/1520-0493(1989)117<0305:NSOAOO>2.0.CO;2

Tripoli, G. J., and W. R. Cotton, 1989b: Numerical study of an observed orogenic mesoscale convective system. Part II: Analysis of governing dynamics. Mon. Wea. Rev., 117, 305–328, https://doi.org/10.1175/1520-0493(1989)117<0305:NSOAOO>2.0.CO;2.10.1175/MWR3188.1

Tuttle, J. D., and C. A. Davis, 2006: Corridors of warm season precipitation in the central United States. Mon. Wea. Rev., 134, 2297–2317, https://doi.org/10.1175/MWR3188.1.

Vitart, F., G. Balsamo, J. Bidlot, S. Lang, I. Tsonevsky, D. Richardson, and M. Balmaseda, 2019: Use of ERA5 to initialize ensemble re-forecasts. ECMWF Tech. Memo. 841, 16 pp., https://doi.org/10.21957/w8i57wuz6.10.1175/1520-0469(2004)061<0361:ATFSLS>2.0.CO;2

Weisman, M. L., and R. Rotunno, 2004: “A theory for strong long-lived squall lines” revisited. J. Atmos. Sci., 61, 361–382, https://doi.org/10.1175/1520-0469(2004)061<0361:ATFSLS>2.0.CO;2.

Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. International Geophysics Series, Vol. 100, Academic Press, 704 pp.10.1002/2017JD027033

Yang, Q., R. A. Houze Jr., L. R. Leung, and Z. Feng, 2017: Environments of long-lived mesoscale convective systems over the central United States in convection permitting climate simulations. J. Geophys. Res. Atmos., 122, 13 288–13 307, https://doi.org/10.1002/2017JD027033.10.1175/1520-0493(1997)125<2176:TGPLLJ>2.0.CO;2